]
TUDelft

Technische Universiteit Delft
Faculteit Elektrotechniek, Wiskunde en Informatica
Delft Institute of Applied Mathematics

Matchings tellen in kubische grafen
(Engelse titel: Counting matchings in cubic graphs)

Verslag ten behoeve van het
Delft Institute of Applied Mathematics
als onderdeel ter verkrijging

van de graad van

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE
door
PIM OTTE
Delft, Nederland

Juni 2014

Copyright (©) 2014 door Pim Otte. Alle rechten voorbehouden.

]
TUDelft

BSc verslag TECHNISCHE WISKUNDE DRAFT

“Matchings tellen in kubische grafen”

(Engelse titel: “Counting matchings in cubic graphs”)
PIM OTTE

Technische Universiteit Delft

Begeleider

dr. D. C. Gijswijt

Overige commissieleden

dr. ir. M.B. van Gijzen drs. E.M. van Elderen

Juni, 2014 Delft

Contents

[1_Introduction 3
%ﬂ@@ 4
.............................. 4

[2 Balanced probability distributiond 7
R Definitiono 7
B2 Existencd . . . oo 7
%@ .. 8
... 9

RS Burld. . ., 9
I3 Cut contractions and decompositions 11
B Cut contractiondo 11
3.2 Cut demmr)ositi(m.zl 11
“ﬂﬂndlmm_pgsﬁg_d 12

3.2.2 Exampleofahubl. 12

3.2.3 Existence of small-cut-decompositiond 12
l4__Structure of proof of Esperet et all 15
17

the pathl 17

17

18

19

19

20

22

22

25

25

29

CONTENTS

Chapter 1

Introduction

In this bachelor thesis we will consider perfect matchings in a special type of graph. Recall that
a graph is a structure consisting of nodes connected by edges. In traditional graphs each pair
of nodes can only be connected by one edge. In this context we consider multigraphs, where
multiple edges between a single pair of nodes are allowed. A perfect matching is a subset of
the edges of a graph, such that each node is indicent to exactly one edge in this subset. For
readability we will often use matching. Where we only consider partial matchings (where some
nodes have no indicent edge), we will mention this explicitly. We will be counting the total
number of matchings, so we will denote the set of all perfect matchings in a graph G by M(G).
This means that we can write the total number of matchings as |M(G)|

The special type of graph we are considering is cubic. This means that each node has exactly
3 edges connecting it to other nodes. Finally, we only consider connected bridgeless graphs. This
entails that there is no edge we can remove such that the graph is divided into two components
(i.e. two sets of vertices which are connected, but no path exists from one set to the other).

This is enough knowledge to introduce the Lovasz-Plummer conjecture, which was formulated
in [13, Conjecture 8.1.8].

Conjecture 1 (Lovédsz-Plummer). There exists an € > 0 such that for any cubic bridgeless
graph G the following holds:

2V & < IM(@)|.

This conjecture was proven in 2011 by Louis Esperet, Frantisek Kardos, Andrew D. King,
Daniel Krél and Serguei Norine [7]. In this proof they show that we may take e = ﬁ. In
addition, note that this conjecture does not specify that the graph has to be connected. However,
if a graph is disconnected, we apply the proof to each component separately. Each matching of
a disconnected component can be combined with all matchings of the other components to yield
a matching for the original graph, which yields the result for the original graph. Therefore it is
enough to consider connected graphs.

After definitions and background to this theorem in Chapter 1, we will provide examples and
further explanation of the base concepts which are introduced or used in this proof in Chapters
2 and 3. In Chapter 4 we will provide a structural overview of this proof to enable further
understanding. Chapter 5 will contain the main result of this thesis. In this chapter we will
prove a stronger version of a corollary in the original proof. The consequences of this will be
explored and this will result in an improvement of the constant to ﬁ.

3

4 CHAPTER 1. INTRODUCTION

1.1 Definitions, notation and conventions

This thesis concerns graphs and (perfect) matchings. In this section we will state some basic
definitions and notation that we will use throughout this thesis. We follow the notations and
definitions from the paper of Esperet et al. [7]. We refer the reader to Diestel [4] for background
and basic notation in graph theory.

For a graph G, we denote the set of vertices by V(G) and the set of edges by E(G). We will
not consider graphs which have loops (edges from a node to itself), but we will consider graphs
that have multiple edges between the same two nodes. For X C V(G), we use G|X for the
subgraph of G induced by X. We define Ex as the set of all edges with at least one endpoint
in X. The set §(X) represents the set of edges with exactly one endpoint in X. This set is also
called an edge-cut or k-edge-cut where k = |§(X)|, because these edges cut the graph into two
components (or sides) when removed: G|X and G|(V(G) \ X). We call an edge-cut cyclic if
both sides contain a cycle. If G contains no edge-cut of size less than k, G is k-edge-connected.
Analogously, if G contains no cyclic edge-cut of size less than k, G is cyclically k-edge-connected.

Some graphs are used quite often, and are hence named. We use K,, to denote a graph on
n nodes, each pair of which is connected by an edge. This is also known as the complete graph
on n nodes. At some point we will also consider Bs. This is a graph on 2 nodes, connected by
3 parallel edges. Note that K, and B3 are cubic graphs.

An important property of cuts in cubic graphs is that (|6(X)| = |X|) mod 2. We prove this
by counting the number of indicent node-edge pairs. If | X| is odd, the total number of node-edge
pairs with the nodes in X is odd. There are an even number of node-edge pairs fully within X,
hence §(X) must be odd. If | X| is even, the total number of node-edge pairs with nodes in X is
even. There are an even number of these fully contained within X, so §(X) is even. So in both
cases we have the mentioned property.

In the introduction we defined M(G) as the set of perfect matchings of a graph G. The
size of this set is the number of perfect matchings in this graph and this leads to the definition
m(G) = |IM(G)|. In addition, we write m*(G) for the minimum over all edges e € E(G) of the
number of perfect matchings containing e.

Across this thesis we will come across some probability theory. We will adhere to the notation
Pr[X = z] for the probability of the event that X is equal to z and E[X] for the expected value
of X. Finally, if we have a function f : X — Y, we will refer to f~(y) = {z € X : f(z) =y} as
the fiber of f at y.

1.2 Background to the theorem

The Lovasz-Plummer conjecture has survived for a relatively long time before it was proven.
Between the formulation and the resolution, progress had already been made with weaker forms
of this conjecture. In this section we provide an overview of some of these related results, in
order to give some context to this theorem.

The first type of earlier result considers additional restrictions on the type of graph. In

1979 Voorhoeve proved the conjecture for bipartite cubic graphs [I5], with a lower bound of

(%)W(GWQ. In 1998 the bipartite case was extended further by Schrijver [14], who proved
. . (k—1)k—1 V(G)I/2
that all k—regular bipartite graphs have at least < R)

perfect matchings. More

recent work includes the version for a specific class of cubic graphs named fullerene graphs by
|[V(G)|—380

Kardos et al. [I1], with a lower bound of 27 1 and a bound of 2/V(GI/655978752 {4 cubic

bridgeless planar graphs was proven by Chudnovsky and Seymour [2].

The second kind of earlier result does consider all cubic graphs, but instead provides a bound

1.2. BACKGROUND TO THE THEOREM)

which is sub-exponential. Earlier results provide several types of linear bounds: i\V(G)] +2 was
proven to be a lower bound by Edmonds, Lovasz and Pulleybank [6]. Kral et al. [I12] improved
this to 1|V(G)|, followed by Esperet et al. [9] improving the bound to 2|V (G)| — 10. Finally,
Esperet, Kardos and Kral [§] showed that a superlinear bound exists.

This piece of mathematics has some interesting applications. Perfect matchings in cubic
graphs are relevant for the Ising model for ferromagnetism [I0]. The stability of fullerenes, a
class of carbon molecules, relates directly to maximal matchings in cubic bridgeless graphs [1].

CHAPTER 1. INTRODUCTION

Chapter 2

Balanced probability distributions

In this chapter we will introduce balanced probability distributions, prove their existence in the
case of cubic graphs and work out some small examples.

2.1 Definition

Given a graph G and X C V(G), we define M(G,X) to be the family of subsets M of Ex,
such that every vertex of X is incident with exactly one edge in M. Note that by defintion
M(G,V(G)) = M(G). Furthermore, elements of M(G, X) do not necessarily have to be partial
matchings in G, because vertices outside X could be incident with multiple edges in this element.

Definition 1 (Balanced probability distribution). A probability distribution M on M(G, X)
is balanced if Prle € M] = % for every e € Ex.

At first glance this may seem an arbitrary definition, but upon closer inspection this intu-
itively defines a “fair” distribution on M(G, X). Note that for each node all indicent edges have
an equal probability of being in M. Since the sum of the probabilities for all these edges should
be one, and we will consider cubic graphs % arises as a natural constant that all probabilities
should be equal to.

2.2 Existence

Lemma 1 (Existence of a balanced distribution). Let G be a cubic bridgeless graph. Then there
exists a balanced probability distribution on M(QG).

Proof. We use the characterization of the perfect matching polytope [5] to obtain a balanced
distribution on M(G). Recall that a perfect matching can be described as a vector in {0, 1}7(G)
where an entry of the vector is 1 if and only if the corresponding edge is in the perfect matching.
The perfect matching polytope describes all convex combinations of perfect matchings as a
polytope in R¥ (@), This characterization can be described as follows:

Pmatching(G) :{X >0:
d(v)) =1 Yo € V(G),
) > 1 VU C V(@) with |U] odd

8 CHAPTER 2. BALANCED PROBABILITY DISTRIBUTIONS

In this characterization the convention is to write 2(§(U)) for the sum over all variables that
correspond to edges in §(U). The non-negativity is a fairly straightforward constraint. The
second constraint arises naturally from the fact that we consider perfect matchings, so the sum
over all edges indicent to a node should be equal to one. The final constraint ensures that any
point in this polytope is indeed the convex combination of perfect matchings. This constraint
could be left out if we were to consider only bipartite graphs. We will prove that %1 is an
element of Pmatching(G) and that this induces the balanced probability distribution.

Firstly, we observe that all elements of this vector are larger than 0, so x > 0 is satisfied.
x(d(v)) = 1 is satisfied, because G is cubic. Let U be a subset of V(G) with |U| odd. Recall
that (JU| = |6(U)|) mod 2, so |§(U)| is odd. Because G has no bridge, the number of edges has
to be strictly larger than 1. Hence [§(U)| > 3, so we have z(6(U)) >3- % = 1.

This means that %1 is a convex combination of perfect matchings. This induces a probability
distribution by defining the chance of a matching M to be the coefficient in this convex combi-
nation. These coefficients are all between 0 and 1. Furthermore, the sum of all coefficients is 1
by definition of a convex combination. Therefore this convex combination gives a well-defined
(though not necessarily unique) probability distribution. This probability distribution is bal-
anced, because the sum of the probabilities over all matchings that contain an edge e is exactly

%, which means it defines a balanced probability distribution. O

2.3 Properties

The first important property of balanced probability distributions is that they can be restricted.
Let Mx be a balanced probability distribution on M(G, X) and let Y be a subset of X. Then
we can define a balanced probability distribution My as follows:

Pr[My = M] := > PrMyx = Mx] VM e M(G,Y)
MxeM(G,X):MCMx

Since each edge e in M(G,Y) is also an edge in M(G, X) we have that Prle € Mx] = 1.
Since each element of M(G, X) can be restricted to M(G,Y’), this probability is preserved and
Prle € My] = 1. Therefore, My is a balanced probability distribution.

The distribution My is referred to as the restriction of Mx. The fact that balanced prob-
ability distributions can be restricted will allow us to define burls in Section such that they
have a similar property.

Secondly, we prove a lemma, which is Claim 3 in [7].

Lemma 2. Let G be a cubic bridgeless graph and consider Y C X C V(G) such that C = §(Y)
is a 3-edge-cut in G. For any balanced probability distribution M on M(G,X), and any M €
M(G, X) such that Pr[M = M| > 0, we have |M NC| = 1.

Proof. Because [6(Y)| = 3, |Y| must be odd. Hence, for any element M of M(G,X) it holds
that |[M N(Y)| is odd. A matching therefore intersects exactly 1 or all 3 of the edges in §(Y).
By definition of a balanced probaiblity distribution, the probability that M contains one specific
edge is equal to % There are four possibilities: Three cases where M intersects one specific edge
and a fourth one where M intersects all the edges. We have estabilished that the first three
cases have probability %, which sums to 1. Therefore, the probability of a matching containing
all edges is 0. Hence if Pr{M = M] > 0, then [M NC| =1 O

2.4. EXAMPLE 9

2.4 Example

Consider K4, the complete graph on 4 nodes. This graph is cubic and bridgeless. We will denote
the vertices by v1, v2, v3,v4 and the edge between v; and v; with e;;. Note that M(Ky) contains
3 matchings: {ejo,ess}, {€13,e24},{€14,e23}. Because each edge is only in one matching, each
of these three matchings needs to have probability % in any balanced probability distribution.
In this case the balanced probability distribution is unique, but this does not always have to be
the case.

We will now consider balanced probability distributions on M(Ky, {v1,v2}), which is equal
to {{e12},{e13, €24}, {€14,€23},{e13, €23}, {€14,€e24}}. For any balanced probability distribution
M it should hold that Pr[M = {ej»}] = %, because that is the only one to include e1. Let
x = Pr[M = {e13,e2}]. This yields Pr[M = {e13,e23}] = Pr[M = {eqs,e24}] = 2 — z and
Pr[M = {e14, e23} = 2. This gives a valid balanced probability distribution for 0 < z < % Note
that for z = % this gives the restriction of the balanced probability distribution on M (Ky).

2.5 Burls

Burls play a large part in the proof given in [7]. By a(G, X, M) we denote the maximum number
of disjoint M-alternating cycles in G|X.

Definition 2 (Burl). A burl is a vertex set X C V(G) such that for any balanced probability
distribution M on M(G, X) it holds that Ea(G, X,M)] > 1.

Burls give a specific definition for the notion that a graph can have a lot of disjoint M-
alternating cycles for some matching M. This notion is important, because a single perfect
matching with N disjoint M-alternating cycles yields 2V different perfect matchings and hence
one can grasp that this will play an important role in the complete proof. Note that if Y C
X CV(G) and Y is a burl, then X is too. This conclusion can be drawn, because any balanced
probability distribution on M(G,X) can be restricted to M(G,Y) and since a(G,Y,M) <
a(G, X, M) we get that E[a(G, X,M)] > %, because Y is a burl.

Figure 2.1: Small example of a burl

In Figure 2.1 we have provided a small example of a burl. If we consider a balanced prob-
ability distribution M on M(G, X) for X = {v1,vs,v3,v4}, then Prley; € M] = 1. Therefore
Prley; ¢ M| = % The only elements of M(G, X) without ep; are {e12, e34} and {e13,e24}. These
are marked by the dotted lines in the figure, and the union is an M-alternating cycle for either
matching. Therefore with probability at least % we have an M-alternating cycle, so X is a burl.

It turns out that if we have X C V(G) with 6(X) < 4 there are some simple sufficient criteria
to conclude that X is a burl. We give the criteria here, however for the proof of these criteria
we refer to [7] (Lemma 6 and 17).

Lemma 3. Any X C V(QG) is a burl if it satisfies one of the following conditions

10

CHAPTER 2.

e /(X)=2
e)(X)=3and |X|>5
e §(X) =4 and m(G|X) > 2.

BALANCED PROBABILITY DISTRIBUTIONS

Chapter 3

Cut contractions and decompositions

In this chapter we will introduce cut contractions and cut decompositions. Intuitively, cut de-
compositions are a method to decompose a graph into smaller graphs which are connected by
cuts. Cut contractions give us a way to reason about the original graph given a cut decomposi-
tion.

3.1 Cut contractions

Definition 3 (Cut contraction). Let C' be a 2- or 3-edge-cut in a graph G. Then the two
C-contractions are defined as follows:

o If C' = {e1, ez}, we take a side of C' and remove ey, €9, as well as the other side. We then
connect the two nodes from which e; and e; were removed.

o If |C| = 3, we take a side of C' and identify all the vertices on the other side with each
other.

Depending on which side we take, we get two different C'—contractions. We say the resulting
graphs G, G are obtained from G by a cut-contraction. In the case of the 3-edge-cut, we turn
all the nodes of one side X into one node, and of edges in Fx we only preserve 6(X). Therefore,
in the case of a 3-edge-cut, we add a node, which is referred to as the new node. In the case of
a 2-edge-cut we add only an edge. This edge is referred to as the new edge.

Note that G, G2 have a couple of nice properties, among which: If G is cubic and bridgeless,
then so are G1 and Gy, and m*(G) > m*(G1)m*(G2). For a proof of these properties, we refer
to [7].

3.2 Cut decompositions

Definition 4 (Cut decomposition). Let G be a graph. A pair (T,¢) is a non-trivial cut-
decomposition if both of the following properties are satisfied:

e T is a tree with E(T) # () and
e ¢:V(G) — V(T) is a function, with |¢~1(t)| + degy(t) > 3 for each t € V(T).

Again this definition seems fairly arbitrary, and at first glance it may not be clear even
why this is called a cut-decomposition. This name has been chosen because each edge in T
corresponds to a cut in G. Given a graph G and a non-trivial cut-decomposition we can induce
a cut in G for every edge f € T as follows. Let 77,75 be the components of T\ f. Then

11

12 CHAPTER 3. CUT CONTRACTIONS AND DECOMPOSITIONS

(X1, X2) = (¢~ H(T1), ¢ (1)) is an ordered partition of V(G) and we denote the cut §(X;) =
(X2) by ¢~ (f).

Definition 5 (Small-cut-decomposition). If [¢~1(f)| € {2,3} for each f € E(T), then we call
(T, ¢) a small-cut-decomposition of G.

3.2.1 Example of a small-cut-decompostion

An example of a small-cut-decomposition is sketched in Figure Bl The left graph is a cubic
bridgeless graph, and the right graph is the tree to which it is mapped. The function ¢ is
represented by the numbers in the nodes, if a node is marked with a 1 in the graph, ¢ maps it
to the node marked 1 in the tree. By inspection one can see that this is not the only possible
small-cut-decomposition for the given graph. To reason about small-cut-decompositions we will
need more information. One method of providing this is to consider hubs.

Figure 3.1: Example of a small-cut-decomposition

Let (T,¢) be a small cut decomposition of a bridgeless cubic graph G, and let Ty be a
subtree of T, such that ¢~ 1(Ty) # 0. Let Ti,...,T, be the components of T\ V(Tp), and for
0 <i <mn, let f; be the unique edge of T' with an end in V(Tp) and V (7;). In addition, we write
X; = ¢~ (V(T3)).

Definition 6 (Hub). Let G’ be the graph obtained from G as follows. Set Gy = G. For
1 < i < n, take G;_1 and let G; be the (¢~!(f;))—contraction containing X,. We define
G' = G,. We call G’ the hub of G at Tj.

3.2.2 Example of a hub

In Figure we provide an example of a hub. We take Tj to be the node marked 1. To get this
hub, three cut contractions have been made. One 2-cut contraction and two 3-cut contractions.
The nodes marked 2’ and 4’ are the new nodes created in the 3-cut contractions and the edge
between these nodes is the one that was created in the 2-cut contraction. Note that this graph
is cubic and that ¢~1(7p) and all outgoing edges are the same as they were in G.

3.2.3 Existence of small-cut-decompositions

Let Y be a collection of disjoint subsets of V(G). We say that a small-cut-decomposition (7', ¢)
of G refines Y if for every Y €) there exists a leaf v € V(T') such that Y = ¢~ (v).

3.2. CUT DECOMPOSITIONS 13

Figure 3.2: Hub at the red node from Figure BT

The following Lemma is given in [7] as Lemma 14 with partial proof. Here we provide all
cases.

Lemma 4. Let G be a cubic bridgeless graph. Let Y be a collection of disjoint subsets of V(G)
such that |Y| > 2 and [6(Y)| € {2,3} for every Y € Y. If one of the following conditions holds,
there exists a small-cut-decomposition refining)

1. Y =0 and G is not cyclically 4-edge-connected.
2.Y={Y} and [V(G)\ Y| >1
3.V >2.

Proof. Let Y = () and G bridgeless, cubic and not cyclically 4-edge-connected. Take X C V(G)
such that 6(X) is a cyclic-edge cut with [§(X)| < 3. Define T the tree with two nodes, t,t" with
one edge. We define ¢(z) =t if z € X and ¢(x) = ¢’ otherwise. This is a cut-decomposition,
because |¢p~1(s)| > 2 for s € {t,t'}, because there are cycles in the components. This is a
small-cut-decomposition, because ¢~!(e) = §(X), which is of size 2 or 3.

Let Y = {Y} and |V(G) \ Y| > 1. Take T the same tree as above and define ¢(z) = ¢ if
r €Y and ¢(z) = t' otherwise. Again |¢p~!(s)| > 2 for s € {¢,#'}. By definition of Y this is also
a small-cut-decomposition.

As third case we consider Y = {Y7,Ys2}. First we consider the case in which V(G) =Y, UY3
For this the exact same small-cut-decomposition as in the case |J| = 1, applied to Y = Y7, is
also a small cut decomposition for this case, and it also refines Y. If there are nodes which are
neither in Y7, nor Y5, the same construction as we will give for |)| > 3 is sufficient.

If |Y| > 3 we take T' the tree on |Y| + 1 vertices with |Y| leaves, which we denote by vy for
each Y €) and we denote the central vertex by vg. We define ¢ by ¢(u) = vy if u € Y for
some Y € Y and ¢(u) = vy otherwise. The pair (T, ¢) by definition refines), the pair clearly
satisfies all conditions to be a cut-decomposition and each edge corresponds to a cut induced by
the pre-image of a leaf and hence is of size 2 or 3 .

]

14

CHAPTER 3. CUT CONTRACTIONS AND DECOMPOSITIONS

Chapter 4

Structure of proof of Esperet et al.

To provide some insight in the proof given in [7] we provide a dependency graph of all claims,
lemmas, corollaries and theorems that appear in the arXiv version of this paper. We will prove
a stronger version of Corollary 21, without making use of Lemma 18, Lemma 19 or Corollary
20. Our proof does lean on Lemma 17, but only in a small way.

We will briefly describe the function of each cluster visible in this dependency graph. Lemmas
8, 9 and 10 eliminate certain triangles. Lemmas 14 and 15 and Corollary 16 prove the existence
of small-cut-decompositions refining certain families. Lemma 7 states some basic properties of
cut-contractions. Claim 3 and Lemmas 5 and 6 show that (large enough) subsets X with |§(X)| €
{2,3} are burls. Corollary 21 and all supporting statements combine small-cut-decompositions
with burls to show how a long path in a small-cut-decomposition results in a burl. Lemmas 22
and 23 provide some facts about cyclically 4-edge-connected graphs and Lemmas 11 and 13 with
Corollary 12 support the proof of Theorem 2, which is a reformulation of Theorem 1.

15

16

CHAPTER 4. STRUCTURE OF PROOF OF ESPERET ET AL.

> |
N

Figure 4.1: Dependency graph of all statements in the proof

Chapter 5

Improving the bound

As the authors suggest in Section 6 of [7], the constant in the main theorem can be improved.
In particular, it is Corollary 21 that can be improved. This corollary describes that a long path
in a small-cut-decompositions leads to a burl. In this chapter we will prove the main theorem
(Theorem [I]) of this thesis and demonstrate how this improves the bound.

Theorem 1 (Long paths in small-cut-decompositions). Let (T, ¢) be a small-cut-decomposition
of a cubic bridgeless graph G and let P be a path in T with |V (P)| = 11. If for every t € V(P),
degy(t) = 2 and the hub of G at t is isomorphic to K4 or Bs, then ¢~ 1(P) is a burl.

Recall that K4 is the complete graph on 4 nodes and Bj is the graph consisting of 2 nodes
connected with 3 edges.

We will prove this theorem by characterizing ¢~!(¢) for all ¢ € V(P) and considering how
each of the subgraphs G|(¢~1(t)) allows continuation of a perfect matching. By case analysis
we supply sufficient conditions under which V(P) is a burl. Finally, we supply an algorithm to
check all possible paths constructed from the characterizations.

5.1 Characterizing the path

Consider a node t of degree 2 in a small-cut-decomposition. The general strategy is to describe
how ¢~ !(t) depends on the hub at . We know this hub is isomorphic to either B3 or Kj.
Because degp(t) = 2, these hubs are the result of exactly two cut-contractions which notably
preserve ¢~ 1(t). Recall that a 3-cut contraction adds a new node, whereas a 2-cut contraction
does not. This means we can determine how many of each type we have when we know |¢~1(¢)|.
In addition, note that |¢~1(t)] > 1 by the definition of a small-cut-decomposition. We will
consider two cases.

5.1.1 The hub at ¢ is isomorphic to B3

Since Bj contains only two nodes, [¢~1(t)] < 2. If |¢~1(¢)| = 1, the cuts must be a 2-cut and a
3-cut contraction. The resulting situation is sketched in Figure [5.Tal (The numbers in this and
all following figures will be relevant when we view the subgraphs in these figures as functions in
a later section.)

The other case is |¢~1(¢)| = 2. In this case the cuts are both 2-cuts, since no new nodes can
be created by cuts. These two nodes must be connected by an edge, otherwise there could not
be the 3 edges needed for Bs. Hence, in this case ¢~!(t) is as depicted in in Figure [F.15l

17

18 CHAPTER 5. IMPROVING THE BOUND

" I SN
\\\ 1
/._ ______
2 11 202
A 2 2 U 4 .
(a) Bs and |¢p1(t)] =1 (b) Bs and |71 (t)| =2 (c) K4 and |71 (t)] =2

Figure 5.1: ¢~1(t) for several hubs and sizes

5.1.2 The hub at ¢ is isomorphic to K,

In this case we can deduce that 2 < |¢~1(¢)| < 4, because the two cut-contractions both add
none or one node. Again, we separate on these sizes:

If [¢~1(t)] = 2, both contractions must be 3-cut contractions. Once again, the two nodes
must be connected, because in 3-cut contractions no new edges are created. This gives us the
situation as in Figure B.1d

If |¢~1(t)| = 3, one contraction must be a 3-cut contraction and the other must be a 2-cut
contraction. Because the 2-cut contraction induces an extra edge, there can be one missing edge
within ¢~1(¢). The case with one missing edge is demonstrated in Figure [5.2al the case without
missing edges can be found in Figure (.2hl Note that the second possibility is not relevant for
the purposes of proving Theorem [since we can redefine any small-cut-decomposition including
this case to split into in the two cases highlighted in Figures [5.1al and 515l

L
1 1
o L
2
T A 2.
(a) Ky and |67} (1)] =3 (b) Ky and 67" ()] = 3

Figure 5.2: ¢~1(t) for several hubs and sizes

The last case is |¢p~1(¢)| = 4. This cases induces two 2-cut contractions. This means that
¢~ 1(t) is isomorphic to Ky with two edges removed. Again this yields two possibilities:

R L
L
2 2 2
(a) Ky and [¢~ (1) =4 (b) Ky and |¢7! (1) =4

Figure 5.3: ¢~1(t) for several hubs and sizes

In this case [5.3al can be left out without loss of generality. Since it contains a 4-cycle, any
path for which there is a ¢~1(¢) of this type, is automatically a burl, by Lemma [

5.2. CONVERTING THE FIBERS TO FUNCTIONS 19

This concludes all possiblilities for ¢~!(¢) we can encounter in proving Theorem [Il

5.2 Converting the fibers to functions

From now on, we will refer to ¢p—1(t) as a fiber, if it does not concern a specific node t. We will
refer to ¢~ 1(V(P)) as the path fiber. If we refer to a node without specifying, this is a node
teP.

By the nature of the small-cut-decomposition, we know each fiber ¢~1(¢) is seperated from
the rest of the graph by two cuts. If we consider the path in one direction, for each fiber this
defines two cuts: an incoming cut (Cj,), and an outgoing cut (Cyyt). This allows us to view
each element as a function 1 : P(Cip,) X P(Cout) — N. defined as:

Y(F, F'y=|{M € M(G,671(t)) : M N Cj, = F and M N Coyy = F'}|

This function represents how many elements exist in M(G, X) containing specific subsets of
Cin and Cyy, where X is a fiber. We can also represent this with a matrix A; defined by
(A)pr = ¢(F, F'). This is a matrix of size 2/Cn| x 2|Cul Tn Figures £ and we provide
all the matrices for the relevant fibers. For the purposes of display and later calculations we use
the following construction to determine the order: We associate each element S of P(Cj,) with
an integer from 0 to 2/%nl —1 in the following manner. We add all the numbers from the figures
in Section 5.1 of each edge in S. So S =) corresponds to 0 and S = C}, corresponds to 3 in
the case of a 2-edge cut and 7 in the case of a 3-edge cut. This encoding determines the order
in the matrices below and will also return later.

(1 0 01 0 0 0 O
001 0O0O0O0O0
0100 O0O0O0O0
1000 0O0O0O
01100000 10 01 0000 1O0O0T1
1000 0O0O0O 0 010 000 0O0OO0OT1FPWO
000 0O0OT1TT1O0 0100 000 0O0OT1TO0OFDO0
000O0OT1O0O0TO0 10 00 00001 0 0 0]
(a) Matrix for Figure E.1al (b) Matrix for Figure 5.1 (¢) Matrix for Figure B.1d
Figure 5.4: Matrices corresponding to several elements.
01001001 10 01
10 000010 0110
1001 0000 0100
001 00O0O0O0 10 00
(a) Matrix for Figure [5.2al (b) Matrix for Figure 5.3
Figure 5.5: Matrices corresponding to several elements.
5.3 Representing a path fiber by a matrix
If we have a path P = (t1,t2,...,t,) in the tree T' of a small-cut-decomposition, we can apply the

same technique and represent the path fiber as a function which gives the number of elements

20 CHAPTER 5. IMPROVING THE BOUND

in M(G, X) having the prescribed intersection with the cuts Cj, and Cyy, with X = ¢~ 1(P).
Furthermore, The matrix Ap corresponding to this function is exactly the product of the matrices
representing each fiber: Ap = Ay - Ay, | - Ap, - Ay

Given a matrix of a path, the following method suffices to prove that the path fiber is a burl.
We find a subset S of P(Cj,) such that the probability of an element occurring is at least é If
the number of matchings is unequal to 1 for each element of this subset and each subset of Cy,;,
then the path fiber is a burl. The reason is as follows. For each element of M(G, X) containing
one of the elements in S, there is another matching with exactly the same edges in C,,;. Hence,
there is an M-alternating cycle in G|X. Because this situation occurs with probability at least
%, this yields E(a(G, X, M)) > 1. Similarly, we can find a subset of P(Coy) such that the
number of matchings is unequal to 1 for each element of this subset and each subset of Cj,.

Note that for purposes of determining whether a matrix represents a burl or not, we can at
any point in the multiplication that gives Ap take all numbers larger than two in the matrix
and redefine them to be two. We only check which numbers are not equal to one, and if another
number is multiplied by the number which we decreased, it will still be larger. While this seems
a fairly innocuous operation, this allows us to consolidate a lot of paths which seem different,
but have the same main characteristics relevant to burls.

5.4 Matrices representing burls

We want to determine a subset S of P(Cy,) such that the probability of S in any balanced
probability distribution is larger than or equal to % We define S; as the subset of P(Cj,)
encoded in binary by ¢ as in Section (5.3l Let M be a balanced probability distribution on
M(G, X). Then we say that p; = PriM N Cy, = S;]. We consider a set of equations that p;
should satisfy for any balanced probability distribution.

For |Cy,| = 2, these probabilities satisfy the following equations. The last two follow from
the fact that we are dealing with a balanced probability distribution.

p + p1 + p2 + p3 = 1
P1 + p3 = %
p2 + p3 = 3

This yields pg > % (by substraction of the second and third equation from the first). Hence,
a matrix representing a path fiber with 4 columns represents a burl if one of the following sets
of columns contains no ones: {0}, {1,3},{2, 3}.

For |Cyy,| = 3, these probabilities satisfy the following equations. Here, the last three corre-
spond to the balance of the probability distribution.

po + p1 + p2 + p3 + pa + ps + pg + pr = 1
Dp1 + p3 + D5 + pr = %

p2 + D3 + pe + pr = 7

pa + ps + pe + pr = 3

Taking the first equation and subtracting the third and fourth yields that pg + p; > %, so by
symmetry and the original equations this yields that the following combinations of indices for
columns give enough information to conclude the path fiber represented by this matrix is a burl

{0,1},{0,2},{0,4},{1,3,5,7},{2,3,6,7},{4,5,6,7}.

Hence if the columns with these indices contain no ones, the matrix represents a burl.
Of course the exact same reasoning holds for C,,; and the rows of the matrix.

5.4. MATRICES REPRESENTING BURLS 21

These two reasonings constitute a basic way to determine if a matrix represents a burl. The
final method yields stronger results, but takes more computing time to check.

Let Ap be a matrix representing a path P, and X the path fiber. We define 7 : M(G, X) —
P(Cin) X P(Cour) as

T(M) = (M N Cin, M N Coyt)

We want to show that Pr[y(7(M)) = 1] < 2Pr[¢p(7(M)) # 1]. In words: we want the probability
that an element of M(G, X) is the only matching with a certain incoming cut and outcoming
cut to be bounded by two times the probability that this is not the case. In this case we can
conclude that the probability that M has an alternating circle is at least %

Let p;; be the probability that an element of a balanced probability distribution correspond-
ing to incoming cut encoding j and outcoming cut encoding i. We define

D EE SCRIES
Yl it (Ap)y =1

We consider a linear program with the following objective:
min : Z CijDij
i7j

The first condition should be ZZ ibij = 1. Furthermore, the sums of probabilities over a row
or column should satisfy the same conditions as in the base case. We use the variables r;, ¢; for
rows and columns respectively. We formulate the full linear program for a 4 x 4 matrix. The
other cases are analogous.

minimize Z CijPij
0<i,j<3
subject to Z pij =1
0<i,j<3
pij 2 0, Vi,j with 0 < 4,5 <3
Z pij = ¢j, Vj with 0 <5 <3
0<i<3
S pi =7 Viwith0<i<3
0<5<3

-

el

IS

ieF

., VFe{{1,3},{2,3}}

, VF e {{1,3},{2,3}}

W= W=

If this linear program yields a value larger than or equal to 0, we can conclude that the matrix
represents a burl. The reasoning behind this is that all balanced probability distributions satisfy
the above equations, so if our target function is positive for all of these possibilities, it must also
be for all balanced probability distributions and that is what we wanted to show.

22 CHAPTER 5. IMPROVING THE BOUND

5.5 Using the characterization to check all paths

We have now characterized all fibers in a path in the small-cut-decomposition. In addition, we
have shown that each of these fibers, and the path fiber can be represented by a matrix. Finally,
we have discerned sufficient conditions for a matrix such that we can conclude that the sequence
of elements represented by this matrix is a burl. Note that if a path has a subpath and the
path fiber of this subpath represents a burl, then the path is a burl. This is one of the basic
properties of a burl mentioned in Section

We can proceed in the following manner. For path lengths from 1 to 11 we take the following
approach: For length 1 we consider all matrices that represent a fiber, for length 1 < n <
11 we consider all matrices that represent non-burl path fibers, where the path is of length
n — 1. Note that throughout this algorithm we allow no numbers larger than 2 as described
earlier. We multiply all these matrices with all possible permutation matrices followed with the
multiplication by all possible matrices representing fibers which were described in Section
We multiply the matrices which do not represent a burl from both the left and the right. We will
only check a matrix if it is a result of both a multiplication from the left and a multiplication
from the right. If it is only the result of one of these, then the path of length n — 1 which was
not used in the construction did correspond to a burl, and hence the path fiber for the path of
length n corresponds to a burl as well. Then we check if the resulting matrix represents a burl.
If not, we save it for the next iteration (again, with no numbers larger than 2).

Finally, we keep track of the number of 2-edge-cuts in the graph. This is because any path
with three 2-edge-cuts in it is a burl by Lemma 17 of [7].

Theorem 2 (Matrices representing burls). Let (T, ¢) be a small-cut-decomposition of a cubic
graph G. Let P be a path of length 11 such that for each node t in P it holds that degp(t) = 2
and the hub at t is isomorphic to By or K4. Then P has one of the following properties:

o The matrix representing the path fiber represents a burl according to one of the criteria in

Section [5.4).

e P has a subpath for which the matriz representing the path fiber represents a burl according
to the same criteria.

e P has 3 or more edges f such that |¢~1(f)| = 2

Proof. To implement the algorithm described in the above section, we used Python 2.7, To
solve the linear progams needed, we called lp_solv from Python. We provide the final code in
Appendix [Al

Running this code this, it turns out that this process converges and after considering paths
of length 11, we have no non-burls left. O

5.6 Calculating the consequences

Theorem [2 immediately results in Theorem Il We have shown that we only need fairly short
paths to obtain burls. When we consider the implications for the proof, we consider the system
of inequalities in [7], Section 2.1. The original system is as follows:

"https://www.python.org/download/releases/2.7/
%http://lpsolve.sourceforge.net/5.5/

https://www.python.org/download/releases/2.7/
http://lpsolve.sourceforge.net/5.5/

5.6. CALCULATING THE CONSEQUENCES 23

0<a<B<B

(0%
1/3656 <
/ ~ 961+ 3

(5.

(5.

B2 + 6a < By (5.
Tdo < 3y (5.
146 < 51 (5.
Ba 4 80a < B (5.
(5.

(5.

(

o.

ot o
o

6o+ < log(6)/log(2)
'Y+2,81+70é—52<1

v ot ot ot ot Ut
o g o Tt W

6o+ 26 < log()/ log(2) 5.9

)
)
)
)
)
)
)
)
)
251+4a§7 (5.10)

We can inspect the proof and express these constraints in terms of the length [. In the
original proof this was 32, so substituting [= 32 results in the above equations. We substitute
[=11 to get the new inequalities. This replaces inequalities 4, 5 and 6 with:

(10 4+ 2l)ar = 32a < 3y (5.4)
(18 + 4l)ar = 62 < By
B2 + (16 + 2)a = 2 + 38 < By

Using Ip_solve, we can determine that with these new inequalities, the 3656 in inequatility 2
can be reduced to 1686 and this system still has a solution. For 1685 this problem becomes
infeasible.

In the new solution equations (5.4), (5.6), (5.9) (5.10) are tight with the following solution
being feasible:

_ log(4/3)
1461og(2)

_ T0log(4/3)

~ 1461og(2)
 32log(4/3)
%= 15 log (2)
_ 144log(4/3)
~ 1461o0g(2)

24

CHAPTER 5. IMPROVING THE BOUND

Chapter 6

Concluding remarks

In this thesis we have provided background and explanation to a fairly recent piece of mathe-
matics. By means of examples and small proofs the core elements of the proof of Esperet et al.
[7] have been dissected. We have shown that this proof can be strengthened by carefully con-
sidering all relevant cases with an algorithm. This results in an improved constant in the proof
of the Lovasz-Plummer conjecture.

Though we do not provide proof of this, we strongly suspect that the path length in The-
orem [I] cannot be reduced to less than 10. Partially this is because Lemma 18 in [7], which
concerns a more limited case is already at length 10. This means that this part of the proof
might be slightly more improved, but any other advancements should be in other parts of the
proof, or using an entirely new technique altogether.

Other branches of relevant research include finding an upper bound on the number of perfect
matchings. Cygan et al. [3] have shown that for some constant ¢ there exists a cubic bridgeless
graph with at least n vertices and at most ¢ - 2*/17-285 perfect matchings.

A more general, unsolved conjecture is formulated in [I3, Conjecture 8.1.8].

Conjecture 2. For k > 3 there exist constants ¢;(k),c2(k) > 0, such that every k—regular
matching-covered graph contains at least ¢z (k)cy (k)Y (%) perfect matchings. Furthermore, ¢ (k) —
00 as k — oo.

In this conjecture, the term matching-covered is used. A graph is matching-covered if every
edge of the graph belongs to a perfect matching. It appears that the proof of Esperet et al. does
not generalize to this conjecture.

6.1 Acknowledgements

There are some people who have contributed to this thesis, directly or indirectly and I would
like to take this opportunity to express my gratitude. First of all, dr. Dion Gijswijt for his en-
couragement during the whole process and particularly his suggestion of this topic, which I have
enjoyed tremendously. I thank prof. dr. Karen Aardal for her introduction to optimization as a
whole and her patience with me during my honours programme research. I would like to thank
Arthur Bik and Laura Molenaar for the useful feedback that resulted from their proofreading
of this thesis. Finally, I want to thank Lidwien, Bernard and Arien, who have all inspired and
encouraged me in their own way.

25

26

CHAPTER 6. CONCLUDING REMARKS

Bibliography

1]

[10]

[11]

[12]

[13]

Vesna Andova, Frantisek Kardos, and Riste Skrekovski. Sandwiching saturation number of
fullerene graphs. arXiv preprint arXiv:1405.2197, 2014.

Maria Chudnovsky and Paul Seymour. Perfect matchings in planar cubic graphs. Combi-
natorica, 32(4):403-424, 2012.

Marek Cygan, Marcin Pilipczuk, and Riste Skrekovski. A bound on the number of perfect
matchings in klee-graphs. Discrete Mathematics € Theoretical Computer Science, 15(1):37—
54, 2013.

Reinhard Diestel. Graph theory. 2005. Springer, 2010.

Jack Edmonds. Maximum matching and a polyhedron with 0, l-vertices. J. Res. Nat. Bur.
Standards B, 69:125-130, 1965.

Jack Edmonds, WR, Pulleyblank, and L Lovasz. Brick decompositions and the matching
rank of graphs. Combinatorica, 2(3):247-274, 1982.

Louis Esperet, Frantisek Kardo§, Andrew D King, Daniel Krél, and Serguei Norine. Expo-
nentially many perfect matchings in cubic graphs. Advances in Mathematics, 227(4):1646—
1664, 2011.

Louis Esperet, FrantiSek Kardo§, and Daniel Kral. A superlinear bound on the num-
ber of perfect matchings in cubic bridgeless graphs. Furopean Journal of Combinatorics,
33(5):767-798, 2012.

Louis Esperet, Daniel Kral, Petr Skoda, and Riste Skrekovski. An improved linear bound
on the number of perfect matchings in cubic graphs. European Journal of Combinatorics,
31(5):1316-1334, 2010.

Andrea Jiménez and Marcos Kiwi. Antiferromagnetic ising model in triangulations with
applications to counting perfect matchings. Discrete Applied Mathematics, 172:45-61, 2014.

Frantisek Kardos, Daniel Kral, Jozef Miskuf, and Jean-Sébastien Sereni. Fullerene graphs
have exponentially many perfect matchings. Journal of mathematical chemistry, 46(2):443—
447, 2009.

Daniel Kral’, Jean-Sébastien Sereni, and Michael Stiebitz. A new lower bound on the
number of perfect matchings in cubic graphs. SIAM Journal on Discrete Mathematics,
23(3):1465-1483, 2009.

Michael D Plummer and Laszlé Lovasz. Matching theory. Elsevier, 1986.

27

28 BIBLIOGRAPHY

[14] Alexander Schrijver. Counting 1-factors in regular bipartite graphs. Journal of Combina-
torial Theory, Series B, 72(1):122-135, 1998.

[15] Marc Voorhoeve. A lower bound for the permanents of certain (0, 1)-matrices. In Indaga-
tiones Mathematicae (Proceedings), volume 82, pages 83-86. Elsevier, 1979.

Appendix A

Code

#!/usr/bin/python2

import numpy as np

import itertools

import sys

import string

import json

from subprocess import check_output

def generate_permutation_matrices(n):

#Generate a permutation of (0, 1, ... n)
for p in itertools.permutations (range(n)):
mat = np.zeros ((2**n, 2%*n))

#Determine how encoding % 1S permuted
for i in xrange (2%*n):

binary = format (i, + str(n) +)

permutedbinary =

for pos in p:

permutedbinary += binary[pos]

mat [i,int (permutedbinary ,2)] = 1

yield np.asmatrix (mat, dtype=np.int32)

perm_matrices = {}
perm_matrices [4] = [mat for mat in generate_permutation_matrices(2)]
perm_matrices [8] = [mat for mat in generate_permutation_matrices(3)]

#Vertex matrices as described in Section 5.2

vertex_matrices = {}

ml = np.matrix([[1, O, O, 1, O, O, O, O],
(o, o, 1, o, o, o, o, ol,
(o, ¢+, o, o, o, o, o, ol,
(1, o, o, o, o, o, o, ol,
(o, o, o, o, 1, o, o, 11,
(o, o, o, o, o, o, 1, ol,
(o, o, o, o, o, 1, o, ol,
(o, o, o, o, 1, 0o, 0, 0]
1, dtype=np.int32)

m2 = np.matrix([[0O, 1, O, O, 1, O, O, 1],
f(t, o, o, 0o, 0, 0, 1, 01,

30

O’ 1’ 0, O’ 0, 0]’
1, 0, 0, 0, 0, 0]

], dtype=np.int32)

, 1, 0, 0, 0, 0, O],
0, 0
0, 0, 0, 1

0, 0, 1, 0, 0, 0]
)

], dtype=np.int32

[1 E 0,
[0 E 0,
m3 = np.matrix ([[0, 1
[1 s O’
[0 I 0,
[0 E 0,
m4 = m1[:4,:4].copy)

m5 = m4.copy ()
m5[1,1] = 1

vertex_matrices [4]
vertex_matrices [8]

cache = []

[m2, m3, m4, m5]
[mi, m2.T, m3.T]

def is_burl(rep, length):
result = determine_burl (rep)

if not result:

cache[length].add((str(rep[0].tolist()), rep[1]))

return result

def generate_representations(length):

if length == 1:

#If length one,

for matrix in

if matrix.

yield

else:
yield
for matrix in

if matrix.

yield
else:
yield
else:

vertex_matrices [4]:
shape [1] == 4:
(matrix, 2)

(matrix, 1)
vertex_matrices [8]:
shape [1] == 4:
(matrix, 1)

(matrix, O0)

APPENDIX A. CODE

iterate over all of the matrices representing a fiber

#Else find all matrices representing a path of length n-1

for rep in cache[length-1]:
matrix, numtwos = rep

#Convert from string to matric
matrix = np.matrix(json.loads(matrix),

#Permutation matric

dtype=np.int32)

for followup_perm in perm_matrices [matrix.shapel[1]]:

#Fiber matric

for followup_vert in vertex_matrices [matrix.shapel[1]]:
#Check 1if this adds a 2-edge-cut in the path

if followup_vert .shape[1]

if numtwos < 2:

yield (reduce_matrix (matrix*followup_perm*

followup_vert),

else:

numtwos+1)

yield (reduce_matrix (matrix*followup_perm*

followup_vert),

31

def generate_representations_pre(length):
"""Exact same functionality as generate_representations(length), but

nun

multiplies on the other side

if length == 1:
for matrix in vertex_matrices [4]:
if matrix.shape[1] == 4:
yield (matrix, 2)
else:

yield (matrix, 1)
for matrix in vertex_matrices [8]:
if matrix.shapel[1l] == 4:
yield (matrix, 1)
else:
yield (matrix, O)
else:
for rep in cache[length-1]:
matrix, numtwos = rep
matrix = np.matrix(json.loads(matrix), dtype=np.int32)

for followup_perm in perm_matrices [matrix.shape[0]]:
for followup_vert in vertex_matrices [matrix.shape[1]]:
if followup_vert .shapel[l] == 4:
if numtwos < 2:
yield (reduce_matrix (followup_vert .Tx*
followup_perm*matrix), numtwos+1)
else:
yield (reduce_matrix (followup_vert.T*followup_perm*
matrix), numtwos)

def reduce_matrix (mat):
#Take the minimum with a matriz containing twos.
return np.minimum(mat, np.asmatrix (2*np.ones (mat.shape), dtype=np.int32))

def determine_burl (rep):
matrix, numtwos = rep

#First use the simpler checks
if matrix.shape[1] == 4:
indices = [[0], [1,3], [2,3]]
else:
indices

({1, 3, 5, 71, [2, 3, 6, 7], [4, 5, 6, 7],
fo, 11, [o, 21, [0, 4]]

for combination in indices:
allGood = True
for idx in combination:

if np.any(matrix[:, idx] == 1):
allGood = False
break
if allGood:

return True

if matrix.shape[0] == 4:
indices = [[0], [1,3], [2,3]]
else:
indices = [[1, 3, &5, 7], [2, 3, 6, 7], [4, 5, 6, 7],

APPENDIX A. CODE

fo, 11, [o, 21, [0, 4]]

for combination in indices:
allGood = True
for idx in combination:

if np.any(matrix[idx, :] == 1):
allGood = False
break
if allGood:

return True

#If simpler checks are not clear, use the limear program

if np.any(matrix == 2):
lprogram = matrix_to_lprogram (matrix)
f = open ("tmp.lp", ‘w’)
f.write(lprogram)
f.close()

bound = check_output (["./check_combination.sh", "tmp.lp"])
if float(bound) >= O0:
return True

return False

def matrix_to_lprogram (matrix):
#Construct the linear program as described in Section 5.4
lprogram = ""
for i in xrange(matrix.shape[0]):
for j in xrange(matrix.shape[1]):

if i == 0 and j == 0:
lprogram += "pOO"
else:
lprogram += "+ p" + str(i) + str(j)
lprogram += " = 1;\n"

for i in xrange(matrix.shape[0]):

lprogram += "p" + str(i) + "0O"

for j in xrange(l,matrix.shape([1]):
lprogram += "+ p" + str(i) + str(j)

lprogram += "= row'" + str(i) + ";\n"

for j in xrange(matrix.shape[1]):
lprogram += "pO0" + str(j)
for i in xrange(l,matrix.shape([0]):

lprogram += " + p" + str(i) + str(j)
lprogram += " = col" + str(j) + ";\n"
if matrix.shape[0] == 4:
combs = [[1, 3], [2, 3]]

else:
combs = [[1, 3, &5, 7], [2, 3, 6, 7], [4, 5, 6, 7]]
for comb in combs:

lprogram += "3*row" + str(comb [0])
for ¢ in comb[1:]:
lprogram += " + 3xrow" + str(c)
lprogram += " = 1;\n"
if matrix.shape[1] == 4:

combs = [[1, 3], [2, 3]]

else:
combs = [[1, 3, 5, 71, [2, 3, 6, 71,
for comb in combs:
lprogram += "3%col" + str(comb[0])
for ¢ in comb[1:]:
lprogram += " + 3xcol" + str(c)
lprogram += " = 1;\n"
target = "min:"
if matrix[0,0] == 1
target += "-p0O0O"
else:
target += "2xp00"
for i in xrange(matrix.shape[0]):
for j in xrange(matrix.shape[1l]):
if i == 0 and j == O0:
continue
if matrix([i,j] == 1:
target += " -p" + str(i) + str(j)
else:
target += " +2xp'+str(i)+ str(j)
lprogram = target + ";\n" + lprogram

return lprogram

def check_paths (length):
print length
non_burl_found = False

33

#Generate represententations by multiplying both left and right and only

constder the intersection.

repl = set([(str(rep[0].tolist()),rep[1]) for rep in

generate_representations(length)])

rep2 = set ([(str(rep[0].tolist()),repl[1]) for rep in

generate_representations_pre(length)])

for rep in [(np.matrix(json.loads(rep[0])),

intersection (rep2)]:
if not is_burl(rep, length):
non_burl_found = True
if not non_burl_found:

print "All paths of length: " + str(length) + "

sys.exit (0)

#Set up the actual calculations
count = 0

cache.append(set ())

for length in xrange (1, 34):

cache.append(set ())
check_paths (length)
print len(cache[length])

rep[1]) for rep in repl.

are burls"

	Introduction
	Definitions, notation and conventions
	Background to the theorem

	Balanced probability distributions
	Definition
	Existence
	Properties
	Example
	Burls

	Cut contractions and decompositions
	Cut contractions
	Cut decompositions
	Example of a small-cut-decompostion
	Example of a hub
	Existence of small-cut-decompositions

	Structure of proof of Esperet et al.
	Improving the bound
	Characterizing the path
	The hub at t is isomorphic to B3
	The hub at t is isomorphic to K4

	Converting the fibers to functions
	Representing a path fiber by a matrix
	Matrices representing burls
	Using the characterization to check all paths
	Calculating the consequences

	Concluding remarks
	Acknowledgements

	Code

