

25 April, 2025

Introducing formalization of mathematics with Tutte's theorem

Pim Otte PhD Candidate

Outline

Introduction

Motivation

Concepts

Tutte's theorem

Demo

Conclusion

Outline

Introduction

Motivation

Concepts

Tutte's theorem

Demo

Conclusion

About me

- Pim Otte
- PhD candidate at Utrecht University & Technical University of Eindhoven
- Topic "Type Theory for Education"
- Webpage: https://pim.otte.dev

Торіс

- Formalization of mathematics: What and Why?
- Demo: Formalizing Tutte's theorem

Outline

Introduction

Motivation

Concepts

Tutte's theorem

Demo

Conclusion

Formalization

• What: Encoding mathematics in a formal system

Formalization

- What: Encoding mathematics in a formal system
- Why: To teach mathematics to computers

Formalization

- What: Encoding mathematics in a formal system
- Why: To teach mathematics to computers
- Why: To create proof assistants (Interactive Theorem Provers)

Why do we want proof assistants?

• Verification

Why do we want proof assistants?

- Verification
- To build tools to help mathematicians

Why do we want proof assistants?

- Verification
- To build tools to help mathematicians
- To scale mathematical collaboration

Verification

• Computer assisted proofs: The four colour theorem [G⁺08]

Verification

- Computer assisted proofs: The four colour theorem [G⁺08]
- Mathematical doubt: The Liquid Tensor Experiment [Buz22] [Com21]

• Proof assistant

- Proof assistant
 - Interactive theorem proving

- Proof assistant
 - Interactive theorem proving
 - Theorem search

• Proof assistant

- Interactive theorem proving
- Theorem search
- Automated theorem proving

• Proof assistant

- Interactive theorem proving
- Theorem search
- Automated theorem proving
- Teaching tools

• What's the biggest mathematical collaboration in the room?

- What's the biggest mathematical collaboration in the room?
- Liquid Tensor Experiment (29 contributors)

- What's the biggest mathematical collaboration in the room?
- Liquid Tensor Experiment (29 contributors)
- Busy Beaver 5 (28 contributors)

- What's the biggest mathematical collaboration in the room?
- Liquid Tensor Experiment (29 contributors)
- Busy Beaver 5 (28 contributors)
- Fermat's Last Theorem (ongoing) (44 contributors)

- What's the biggest mathematical collaboration in the room?
- Liquid Tensor Experiment (29 contributors)
- Busy Beaver 5 (28 contributors)
- Fermat's Last Theorem (ongoing) (44 contributors)
- Equational Theories (56 contributors)

- What's the biggest mathematical collaboration in the room?
- Liquid Tensor Experiment (29 contributors)
- Busy Beaver 5 (28 contributors)
- Fermat's Last Theorem (ongoing) (44 contributors)
- Equational Theories (56 contributors)
- Mathlib (413 contributors)

• Problem: Generative AI is hit or miss

- Problem: Generative AI is hit or miss
- A formal (intermediate) language allows verification

- Problem: Generative AI is hit or miss
- A formal (intermediate) language allows verification
- Positive feedback loop (during training and at runtime)

- Problem: Generative AI is hit or miss
- A formal (intermediate) language allows verification
- Positive feedback loop (during training and at runtime)
- Examples: AlphaProof [AA24], Deepseek Prover [XGS⁺24]

Outline

Introduction

Motivation

Concepts

Tutte's theorem

Demo

Conclusion

Introducing formalization of mathematics with Tutte's theorem 25 April, 2025

• Core idea: Encode mathematical statements as types in a programming language

- Core idea: Encode mathematical statements as types in a programming language
- With A, B propositions, A implies B: $A \implies B$

- Core idea: Encode mathematical statements as types in a programming language
- With A, B propositions, A implies B: $A \implies B$
- A function $f : \mathbb{R} \to \mathbb{Z}$ turns a real number into an integer

- Core idea: Encode mathematical statements as types in a programming language
- With A, B propositions, A implies B: $A \implies B$
- A function $f:\mathbb{R}
 ightarrow\mathbb{Z}$ turns a real number into an integer
- A function $f : A \rightarrow B$ turns a proof of A into a proof of B.

- Core idea: Encode mathematical statements as types in a programming language
- With A, B propositions, A implies B: $A \implies B$
- A function $f:\mathbb{R}
 ightarrow\mathbb{Z}$ turns a real number into an integer
- A function $f : A \rightarrow B$ turns a proof of A into a proof of B.
- Similarly: for P : ℝ → Prop, ∀x : ℝ, P(x) corresponds to a function that provides a proof of P(x) on an input x.

theorem example1 {A : Prop} : A \rightarrow A := fun (a : A) => a

theorem example2 {P : $\mathbb{N} \to \text{Prop}$ } : (\forall (n : \mathbb{N}), P n) \to P 37 := fun Pforall => Pforall 37

Tactics Demo

Tactics Demo

```
import Mathlib
theorem rearranging (x \ y \ z : \mathbb{R}):
    (5*x + y) * z + (3*z)*y = 5*x*z + 4*y*z := by
 ring
theorem integer_inequalities (n m : \mathbb{Z})
    (h : n < 5 * m) (h2 : 5 + n > -m) : m > -1 := by
  omega
theorem linear_inequalities (a b : \mathbb{R}) (h : 5*a + b < 10) (h2
    : 9*a - 5*b > -20) : b < 6 := by
 linarith
```

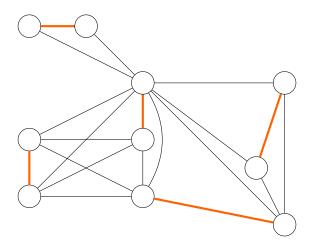

Outline

Introduction

Motivation

Concepts

Tutte's theorem


Demo

Conclusion

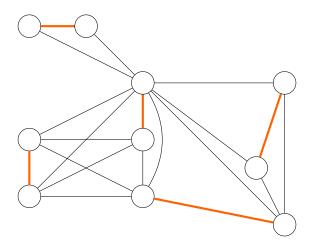
Introducing formalization of mathematics with Tutte's theorem 25 April, 2025

Perfect Matching

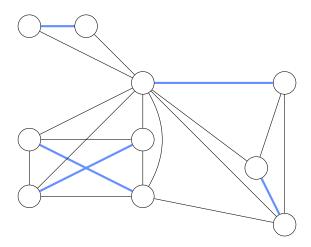
Perfect Matching

Definition (Perfect matching).

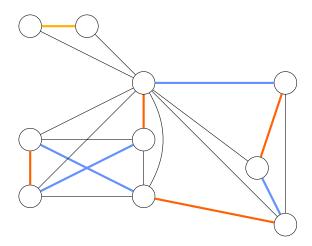
A perfect matching of G is a subgraph M, such that every vertex in G is connected in M to exactly one other vertex.

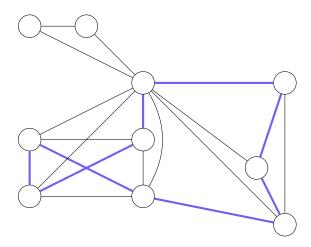


Tutte's theorem


Theorem (Tutte, 1947).

A graph G has a perfect matching if and only if for any subset $U \subseteq V$ the graph G - U has at most |U| components of odd size.





Alternating graph

Definition (Alternating).

A graph G is alternating with respect to some other graph G' if exactly every other edge in G is in G'.

Symmetric difference

Definition (Symmetric difference).

The symmetric difference of G and G' (denoted by $G \Delta G'$) is the graph consisting of edges that are in exactly one of G and G'.

Symmetric difference of perfect matchings is alternating

Lemma.

Let M, M' be perfect matchings of a graph G, then the symmetric difference $M \Delta M'$ is alternating with respect to M.

Symmetric difference of perfect matchings is alternating

Lemma.

Let M, M' be perfect matchings of a graph G, then the symmetric difference $M \Delta M'$ is alternating with respect to M.

Proof.

It suffices to show that for any vertex v in $M\Delta M'$ and two edges including v, exactly of these edges is in M. By definition of $M\Delta M'$, both of these edges must be in M or M'. Since M and M' are perfect matchings, each edge must be in exactly one of the two. So in particular, exactly one of these edges is in M.

Outline

Introduction

Motivation

Concepts

Tutte's theorem

Demo

Demo

Demo

lemma

Subgraph.IsPerfectMatching.isAlternating_symmDiff_left
{M' : Subgraph G'} (hM : M.IsPerfectMatching)
(hM' : M'.IsPerfectMatching) :
(M.spanningCoe △ M'.spanningCoe).IsAlternating
M.spanningCoe := by
sorry

Outline

Introduction

Motivation

Concepts

Tutte's theorem

Demo

• Teaching computers mathematics: verification, tools and collaboration

- Teaching computers mathematics: verification, tools and collaboration
- How to get started?
 - Lean, Rocq, Isabelle, Agda

- Teaching computers mathematics: verification, tools and collaboration
- How to get started?
 - Lean, Rocq, Isabelle, Agda
 - Natural number game: https://adam.math.hhu.de/

- Teaching computers mathematics: verification, tools and collaboration
- How to get started?
 - Lean, Rocq, Isabelle, Agda
 - Natural number game: https://adam.math.hhu.de/
 - Do/join/supervise a project

- Teaching computers mathematics: verification, tools and collaboration
- How to get started?
 - Lean, Rocq, Isabelle, Agda
 - Natural number game: https://adam.math.hhu.de/
 - Do/join/supervise a project
 - Utrecht Summer School

References

- AlphaProof and AlphaGeometry, Ai achieves silver-medal standard solving international mathematical olympiad problems, 2024.
- Kevin Buzzard, *Beyond the liquid tensor experiment*, 2022.
- Johan Commelin, *Liquid tensor experiment*, Nieuw Archief voor Wiskunde **22** (2021), no. 4, 231–234.
- Georges Gonthier et al., *Formal proof-the four-color theorem*, Notices of the AMS **55** (2008), no. 11, 1382–1393.
- Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and Xiaodan Liang, Deepseek-prover: Advancing theorem proving in Ilms through large-scale synthetic data, 2024.

Utrecht Sharing science, University shaping tomorrow

Thanks to Yaël Dillies, Bhavik Mehta, Kyle Miller and other mathlib reviewers.

pim.otte.dev

Utrecht Sharing science, University shaping tomorrow

Thanks to Yaël Dillies, Bhavik Mehta, Kyle Miller and other mathlib reviewers.

pim.otte.dev