
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Sybil-resistant trust mechanisms in distributed
systems

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

PIM OTTE

Delft, the Netherlands
December 2016

Copyright c© 2016 by Pim Otte. All rights reserved.

MSc THESIS APPLIED MATHEMATICS

“Sybil-resistant trust mechanisms in distributed systems”

PIM OTTE

Delft University of Technology

Daily supervisors Responsible professor

Dr. D. C. Gijswijt Prof. dr. ir. K. Aardal

Dr. J. Pouwelse

December 2016 Delft, the Netherlands

Abstract

In this thesis, the problem of estimating trust in distributed systems is considered. Distributed
systems can be virtual or real-world systems in which multiple agents interact. One of the
biggest problems in distributed systems is that they only function well if everyone contributes
some resources. If agents do not participate, or try to pretend they participate, but in fact
are slacking off, then the system might not achieve its desired purpose. This work presents
two methods to estimate how well agents contribute to the network, while preventing cheating.
Firstly, the NetFlow algorithm, which uses max-flow computations to bound the profit of cheat-
ing by Sybil attacks. Secondly, the Temporal PageRank algorithm, which uses information about
the ordering of the interactions to provide a robust mechanism to determine reputation. The-
oretical guarantees about several aspects of these algorithms are provided. Furthermore, these
mechanisms are tested on data from a real-world distributed system: Tribler, an anonymous
peer-to-peer downloading system. Finally, taking both the theoretical and practical results, the
broader implications of these mechanisms and future possibilities are explored.

5

6

Preface

This thesis is the capstone to my master Applied Mathematics at TU Delft. As this final
project comes to an end, I am very satisfied with the work that follows. While I do not feel
this is necessarily my best mathematical work in the pure sense, I am happy to have been able
to apply my mathematical knowledge to the field of distributed systems and specifically to one
system which supports privacy and security. I feel that these areas are key in ensuring that the
digital world remains at least as open and free as it has been in the past decade.

There are a few people who have supported me in this endeavour who I would like to
thank. My daily supervisor, Johan Pouwelse. His ideas and contagious enthusiasm have kept
me inspired and motivated throughout. Dion Gijswijt, who as mathematical supervisor has
brought the necessary rigour and precision where desired. I thank both of them for their input
and I could not have wished for more balanced pair of supervisors. I thank Pim and Ewout,
fellow members of the “MultiChain team”, as well as office roommates Tim and Jesse for their
input during sparring sessions. Stefan and Hassan have my gratitude for their proofreading
of this work. Of course, any and all remaining flaws are my responsibility alone. I thank all
students and staff on the 7th floor for their creation of an enjoyable working environment, as well
as pizza/gaming night. I thank all my mathematical friends who have tolerated my defection
from mathematics.

Finally, my parents, Arien and Bernard, and my sister Lidwien. They have supported and
encouraged me throughout the entirety of the journey that has lead me to this point. They have
shown interest and encouraged me to think critically. I thank them for all of this.

Pim Otte

7

8

Contents

1 Introduction 11

2 Research question 15
2.1 Fairness . 16
2.2 Resistance to manipulation . 16
2.3 Efficiency of computation . 16

3 Base Model of Interaction Information 19
3.1 Base model . 19
3.2 Base model applied to Tribler . 23

4 Accounting mechanisms and Sybil-proofness 25
4.1 Accounting mechanisms and DropEdge . 26
4.2 Defining accounting mechanisms . 27

4.2.1 Properties of accounting mechanisms . 28
4.2.2 Defining Sybil attacks . 29

4.3 Bounding Sybil attack profit . 30
4.3.1 Improving informativeness by scaling . 33

4.4 Attacks on Net-Flow . 35
4.4.1 Propagation slowness . 35
4.4.2 Partial network visibility . 35
4.4.3 Collusion attack . 35

4.5 Theoretical Performance of NetFlow . 36

5 Considering Time 39
5.1 Random walks in the Ordered Interaction Graph 39
5.2 Computational aspects of Temporal PageRank 40
5.3 Properties of Temporal PageRank . 41

6 Experimental Evaluation 45
6.1 Data collection . 45
6.2 NetFlow evaluation . 45
6.3 Temporal PageRank Evaluation . 50
6.4 Cross-mechanism Evaluation . 53
6.5 Performance Evaluation . 55

7 Conclusion and Discussion 57
7.1 Fairness . 57
7.2 Resistance to Manipulation . 57
7.3 Performance . 58

9

10 CONTENTS

7.4 General conclusion . 58
7.5 Discussion . 58

7.5.1 Future Research . 58
7.5.2 This Research in Broader Context . 59

Chapter 1

Introduction

Nowadays, the Internet is an absolutely critical piece of infrastructure. According to the In-
ternational Telecommunication Union, 47% of the world population uses the internet. In the
developed world, 81% of the inhabitants use the internet [28]. The Internet is used for impor-
tant communication and banking, education, but also for entertainment and leisure. Perhaps
surprisingly, Internet access has not quite made it to being a basic human right. However, the
United Nations Special Rapporteur on the promotion and protection of the right to freedom of
opinion and expression, wrote the following on the matter in a report [25]:

“there should be as little restriction as possible to the flow of information via the
Internet, except in few, exceptional, and limited circumstances prescribed by inter-
national human rights law.”

-Frank La Rue

This leaves little doubt that the availability of the internet is protected by Article 19 of the
Universal Declaration of Human Rights “freedom of opinion and expression”[2].

A more controversial issue has been going on for longer than it is known to the general public.
In 2013, Edward Snowden disclosed the first of several pieces of information that have shown
digital communication, the internet included, is subject to extensive surveillance. Also known
as the “Snowden Revelations”, the information released consists of a series of documents and
accompanying articles. The documents originate from several intelligence agencies and detail
the scale and methods with which these agencies perform digital surveillance. About this, David
Lyon writes the following [20]:

“Given the reliance on western liberal legal traditions it is hardly surprising that
public debate generally commences around the question of privacy. Understood as a
human right, it underlies aspects of democratic polity, such as freedom of expression.
Often understood in the post-Snowden era as relating to control of communications
about oneself, it is clearly a threatened value if not according to some a forlorn
hope.”

-David Lyon

Hence, if we value the human rights to freedom of expression and privacy, then an internet
with entities performing unbounded surveillance is not desirable.

On the one hand, even back in 2001 there was a growing consensus that the internet poses a
threat to the existence of authoritarian regimes [15]. On the other hand, regimes like China [8]
and Iran [17] try their very best to censor content.

11

12 CHAPTER 1. INTRODUCTION

The solutions to ensuring availability of the internet and its services appears to have one
thing in common. All systems aiming to do so leverage the concept of a distributed system.
Distributed systems are networks of computers that all perform part of a common task. One of
the advantages of distributed systems is that, if well designed, they are extremely hard to take
down. One of the disadvantages of a distributed systems is that there will be difficulties in the
distribution, in particular if the system is actually physically distributed.

A prime example of using a distributed system to increase availability is the BitTorrent
protocol [3]. This protocol enables a technique called peer-to-peer filesharing. In this paradigm,
many computers are in possession of (part of) a file. Computers that do not possess the entire
file can request pieces of it from other computers (also known as peers). This protocol ensures
the availability of this file. If any peer stops functioning, the rest of the network can continue
to exist as is, as long as all active peers together have the entire file. The BitTorrent protocol
enables availability. It provides a technical solution to technical censorship. However, in this
protocol it is trivial for an entity to find out who is downloading or uploading a certain file. The
whole protocol is built to find others who are downloading the same content. This means that
political censorship can not be circumvented using BitTorrent, as one might be able to obtain
the data, but would then be arrested afterwards.

An example of a distributed system that ensures both availability and privacy is Tor [4]. Tor
uses a so-called onion routing protocol. The concept of onion routing is as follows. One obtains
a list of peers in the network, at least one of which needs to be available as “exit node”. If one
then wants to communicate with the internet, any request that would normally be sent directly
is instead routed through two or more of these peers, the last of which must be an exit node.
This is done by wrapping the request in one layer per peer. These layers constitute the onion.
The way this is done is such that each peer in the network knows the previous and next link
in this chain, but no one except the originator knows the entirety. The exit node is the last
hop, and they will send this on to the recipient on the internet. Hence, they know everything
that is not encrypted about this request and response, which includes at least the recipient. See
Figure 1.1 for a visual representation. The aim of using an onion protocol is to hide the identity
of the browsing party. Indeed, their identity can only be revealed if too many of the peers in the
chain are controlled by the same party. This protocol can be applied to any sort of web traffic,
including BitTorrent traffic.

The techniques of BitTorrent and Tor have both been incorporated into another piece of
software: Tribler. Since both of these techniques are quintessentially distributed, naturally
Tribler itself works as a distributed system. This piece of software unifies several key pieces of
technology to provide anonymous BitTorrent to its users. In addition, it provides a distributed
search engine for torrent files and a built-in media player in order to stream a torrent.

While this piece of software may at first glance seem to be the ultimate tool of an internet
pirate, allow us to consider it in the light of the human rights mentioned above. Due to its dis-
tributed nature, Tribler is much less susceptible to traditional filtering and censoring techniques.
In particular, unless all connectivity to a peer is severed, there is very little an authoritarian
regime can do once a user gets their hands on Tribler. This enables information to freely flow
from peer to peer and hence enables Frank La Rues vision of as little restriction as possible.
Furthermore, the other side of the human rights equation considers the human right to privacy.
That Tribler offers this is not a point of discussion. What might be considered is the question
of whether Tribler offers too much privacy. Does it prevent law enforcement from doing their
job? Does Tribler impact the war on terror? One might argue that Tribler does in fact offer
too strong of a protection. However, the legal measures law enforcement can take, like a digital
wiretap specific to a person or computer, are not prevented by Tribler. What is prevented is the
style of mass surveillance uncovered by the Snowden revelations.

13

Figure 1.1: How Tor works. The Tor Project, Inc.1 is the owner of this image. Used under the
Creative Commons Attribution 3.0 United States License2

Distributed systems seem to be all sunshine and no rain. Protecting human rights and
ensuring availability of services. However, the decentralization does pose certain problems. One
problem in particular is resource management. A decentralized system like Tribler has many
of the same properties as the climate change problem. Most of the world is aware climate is
changing and that a change in their behaviour would help to mitigate this problem. In fact, if
the world as a whole does not alter their behaviour, there might be catastrophic consequences.
However, the impact a single person or household has is extraordinarily small. So small, that
most people reason that their behaviour does not impact the world, so they will just continue
living as they always have. This problem is known as the tragedy of the commons. Everyone
would win if everyone participated, but one person can not make the difference. This concept
has been studied at length in the past decades. We refer to Hardin [13] for a view of this problem
in broader society. In Tribler, this concept exists in the following form: Everyone would like to
use the network to download data. However, in order to do so, there needs to be at least one
agent to relay this data, and then another one to request it from the internet. This means that
if enough agents fulfill these functions out of their free will, and everyone does a little bit, the
load will be spread and the network will function. However, it is much more enticing to not
contribute and only consume.

The problem here is that since the system itself needs to maintain anonymity, the task of
finding out if an agent is contributing suddenly becomes a lot harder. In particular, it becomes
very hard to determine whether an agent is real, and has had interactions with others, if one can
not have a direct interaction with this agent. An agent could simply exist by claim of another,
including fictional interactions with the real agent. Any trust system should therefore be able
to deal with such attacks. The theoretical resistance to attacks, and the performance in practice
are the subjects of this thesis.

Traditionally, in BitTorrent networks, this problem has been solved for public torrents by
simply relying on altruistic agents, who contribute based on nothing more than their good will.

1https://www.torproject.org/about/overview.html.en
2https://creativecommons.org/licenses/by/3.0/us/

14 CHAPTER 1. INTRODUCTION

There also exists the concept of a private community, in which a central entity records how
much data is downloaded and uploaded by each agent. This central entity then does “ratio
enforcement” and excludes members that drop below a certain contribution ratio. Tribler has
so far mostly relied on the altruists. Recently, a movement has started to bring some sort of
trust system to Tribler. In particular, if an agent considers another one to be trustworthy, in the
sense that they have contributed a lot to the network, the former would give the latter priority
in requests for resources. This scheme solves the tragedy of the commons by inducing agents
to contribute. Contributing more would give an agent better service. By introducing a direct
incentive, the tragedy of the commons is solved by the rationality of the agents involved.

In this trust system, each agent should have some indication of the reputation of each other
agent with respect to their contribution and consumption in the network. If an agent contributes
enough relative to their consumption to have a positive impact on the network, they have a good
reputation. If not, they have a negative reputation. Reputation may be subjective, in the sense
that it could be different from the perspective of different agents. However, it should lead to a
ranking of the other agents, such that priority can be given to the agents with better reputation
as described above.

The concrete contributions of this thesis are as follows: Chapter 2 contains the research
question about the existence of a reputation system for distributed systems. Additionally, it
contains a division of this question into several parts representing different aspects of the prob-
lem. Chapter 3 presents the base model for interactions in distributed systems, which will be
used in the rest of the thesis to study systems that are candidates for fulfilling the research
question. Chapter 4 contains our NetFlow mechanism, supported with examples and theoretical
results about its properties, in particular its resistance to Sybil attacks. Next is Chapter 5, in
which Temporal PageRank is introduced, a mechanism that uses the order of interactions in the
system to compute reputation. Again, some theoretical properties are highlighted. Chapter 6
shows the performance and properties of above mechanisms in practice. This is done by apply-
ing the mechanisms to a dataset obtained through a real-world deployment of Tribler with the
MultiChain data structure. Finally, Chapter 7 concludes the research and discusses caveats and
potential for future research.

Chapter 2

Research question

Distributed systems have many advantages over traditional centralized systems, such as resilience
against technical attacks as well as political attacks to take the system down, the ability to spread
system load over multiple entities and physical locations and resilience against technical system
failures or natural disasters. However, building and maintaining a distributed system comes with
several challenges, in particular that the agents in this system will need to contribute in order
for the system to function. This can easily lead to a tragedy of the commons, where nobody
participates, but the result would be better if everyone pitched in a small amount of effort.

The focus of this thesis is the following research question:

Can agents in a distributed network use confirmed information about interactions and their
order to judge the reputation of other agents in a fair and efficient way?

Before anything else, we need to specify what “judge the reputation” means. An agent will
judge the reputation of others by assigning each of them a score. If one agent is assigned a
higher score than another, the former is judged to be more reputable. These scores could then
be used to determine priority in distributing resources.

Throughout this thesis we consider Tribler as an application area and experimental eval-
uation will be done using Tribler. In this context, a system that assigns a score to agents
given information about their interactions has been dubbed an “accounting mechanism” by
Seuken and Parkes [27]. This work will adhere to this terminology. The exact definition of an
accounting mechanism will follow in Chapter 4.

To restrict the scope of this research, only accounting mechanisms are considered as a method
of using the information about the order of interactions. The limitation of accounting mech-
anisms is that the reputation of each other agent must be reduced to a single number. The
alternative would be a vector-valued reputation, which introduces extra complexity. Since using
single-valued reputation already brings us to a case which is far from fully understood, this
research is limited to that case.

This reduces the main research question to the following:

Does confirmed information about interactions and their order allow the design of an
accounting mechanism that satisfies the following three properties?

• The accounting mechanism is fair.

• The accounting mechanism is manipulation-resistant.

• The accounting mechanism is efficiently computable.

These properties are not well-defined in this context, so we consider each of them.

15

16 CHAPTER 2. RESEARCH QUESTION

2.1 Fairness

The meaning of fairness as in the above property is that the score assigned to an agent accurately
reflects their contribution. The problem with this is that the target might vary for different
application domains. For example, in the context of a social network where interactions are
friendships, interactions are positive for both sides. In a system like Tribler, interactions will be
positive for at least one side, but might have a negative impact on the reputation of the other
side. In a distributed system like Bitcoin, we might interpret the amount of money an agent
possesses as a score assigned. In this case, the transfer of money is the interaction, and it will
be positive for one agent and negative for the other.

For purposes of this thesis we will zoom in on fairness in the context of Tribler. This
notion would hold up for other distributed systems in case that each node can contribute or
consume resources, where contributing is positive, consuming is negative, and contributing and
consuming the same amount is explicitly seen as positive. Generally, in BitTorrent networks,
the ratio between upload and download is seen as a fair measure of contribution. However, since
in Tribler, relaying data for onion routing is a service that the network provides, uploading and
downloading the same amount is seen as a positive thing. This is not reflected in the ratio, which
means that we cannot take it as an accurate representation of a fair accounting mechanism.

To at least get some notion of what constitutes fair, let us consider an agent that engages in
a new interaction. Then the following would be an indication of a fair mechanism:

• If the agent consumes more resources than they contribute, their score goes down.

• If the agent consumes less resources than they contribute and less than they have done
historically, their score goes up.

• If the agent consumes less resources than they contribute, but more than they have done
historically, their score might not change.

2.2 Resistance to manipulation

While fairness says something about the score in relation to the actions within the system,
resistance to manipulation concerns actions that are not “normal” in the system. In the main
research question, this property is hidden in the concept of “fair”. It is implied that in a fair
system, cheating should not be possible. In particular, lying of any sort, creating extra or new
identities and any other actions than participating in the network should not lead to an increase
in score. Attacks that involve non-existent identities are referred to as Sybil attacks, a term
which was coined by Brian Zill and introduced into scientific literature by Douceur [6]. These
kinds of attacks can be particularly problematic in systems where there is no control on or cost
associated with the creation of a new identity. An example of a network that has been attacked
in such a way is the KaZaA filesharing network, where users could rate files based on their
quality. It was found that songs of which a lot of invalid copies existed in the network also had a
high incidence of being falsely rated as good quality, suggesting that Sybils were used to pollute
the system [19].

2.3 Efficiency of computation

As well known, the efficiency of algorithms can be compared with big-O notation. It might
vary per application domain if an accounting mechanism with a certain theoretical worst-case
performance is usable. It might be that some theoretically slow mechanisms turn out to be fast

2.3. EFFICIENCY OF COMPUTATION 17

in practice, or that the instance sizes are small enough to allow a higher-complexity algorithm.
Hence, in addition to big-O notation, the efficiency will be studied in practice.

In the case of Tribler, it is still the subject of discussion how long computation of an ac-
counting mechanism may take for it to be fast enough. This would also depend on how it is
used. In Tribler, connections last for 10 minutes. This suggests that doing a computation every
10 minutes would be a reasonable interval. However, taking 10 minutes worth of CPU time
would lead to user complaints. Anything below 30 seconds of single core computation would
be acceptable. Waiting for a longer interval between computations makes a longer computation
time acceptable, but this comes at a cost of relying on slightly outdated values for decision
making. Performing one computation daily would make 5 minutes of single core computation
time an upper bound.

18 CHAPTER 2. RESEARCH QUESTION

Chapter 3

Base Model of Interaction
Information

In order to exploit information about interactions, this information will need to be available in
the first place. In order to allow general applicability of the techniques, first the general model
is considered in Section 3.1, which is then shown to be relevant in the particular case of Tribler
in Section 3.2.

3.1 Base model

In order to incorporate temporal information in Sybil defence mechanisms, there will be some
assumptions needed about the information which is available. Hence, applications that fit the
following model will be explored.

Definition 1 (Ordered interaction model). An ordered interaction model M = 〈P, I, a, w〉
consists of two sets and two functions.

• P , a finite set of agents

• I, a finite set of interactions

• a : I → P × P , a function mapping each interaction to the participants involved

• w : I×P → R≥0, a function which describes the contribution of an agent in an interaction

Note that w(i, p) = 0 must hold if p /∈ a(i).
Agents represent entities that can interact with each other. An interaction involves two

different agents, one or both performing work for each other.
Furthermore, for each p ∈ P , the following set must be completely ordered.

Ip = {i ∈ I : p ∈ a(i)}

The ordering on Ip is denoted by ≤p.

This model can be applied to any system where agents interact and perform work for each
other, where this work can be quantified in a number. In most cases, the ordering on the
interactions per agent will be relatable to time. A possible application is a system in which agents
lend each other money. Any kind of payment then is an interaction, where the contribution is
the amount of money transferred. Other applications are systems where agents perform favours

19

20 CHAPTER 3. BASE MODEL OF INTERACTION INFORMATION

for each other, where either the favour is measurable in a quantity, or has a monetary value
that can be associated with it. This model breaks down if different agents value the same work
differently. In this case an extension using game theory would provide a solution.

Definition 2 (Successor of an interaction). Let M = 〈P, I, a, w〉 be an ordered interaction
model. Let p ∈ P , i, j ∈ I such that i <p j. If there exists no i′ such that i <p i

′ <p j, then j is
the successor of i. This is denoted by i �p j.

This model induces a graph that resembles traditional interaction graphs, but preserves the
knowledge of the order of interactions.

In order to shed more light the concept of an ordered interaction model and other definitions
that will depend on this, let us consider a running example. This example involves 3 agents:
P,Q,R. The model is represented in Table 3.1

Interaction Id Agent 1 Seq 1 Contribution 1 Agent 2 Seq 2 Contribution 2

P1Q1 P 1 5 Q 1 3
P2R1 P 2 7 R 1 1
Q2R2 Q 2 3 R 2 8
P3R3 P 3 2 R 3 3

Table 3.1: Set of interactions for examples

In Table 3.1, the attributes of the interactions are specified. For each interaction the agents
involved are listed, along with their respective contributions. In addition, the sequence number
(“Seq”) is listed. Recall that the set of interactions of each agent must be completely ordered.
The sequence number is simply the numbering of this set as prescribed by the ordering. This
also gives an easy way to uniquely identify an interaction, namely by concatenating the agents
with their sequence numbers. This is listed as the interaction id.

With this example in mind, allow us to consider Definition 3, one of three graphs based on
an ordered interaction model.

Definition 3 (Ordered interaction graph). The directed graph GM = (V,A) is defined as
the ordered interaction graph derived from an ordered interaction model M = 〈P, I, a, w〉. Its
structure is as follows:

• V := {vi : i ∈ I}

• A := {(vi, vj) : i, j ∈ I, and ∃p ∈ P s.t. i �p j}

The weight of an arc in GM is as follows:

wGM
(e) := w(j, p), where p ∈ a(i) ∩ a(j), e = (vi, vj) ∈ A : w

Example 1 (Ordered interaction graph). Figure 3.1 depicts the ordered interaction graph de-
rived from the data in Table 3.1. Note that some numbers present in the table are not in the
graph, as the contributions in an interaction are weights on the arcs to the successors of that
interaction. If that successor does not exist yet, those contributions have no representative in
the graph. The ordered interaction graph functions mainly as a structure to consider, as the
name says, the order of interactions. Note that if the ordering of the Ip represents a temporal
relationship and there are no disparities between the time an agent records an interaction, the

3.1. BASE MODEL 21

ordered interaction graph is an acyclic graph that corresponds to the natural partial order that
is induced by the total orders on the Ip. If this is not the case, this graph will contain cycles.
In this case one can still derive a partial order, in which interactions that are in the same cycle
are considered to be incomparable. However, this might result in the complete order of the Ip
not being maintained.

P1Q1

P2R1

Q2R2

P3R3

5

3

7

1

8

Figure 3.1: Example of an ordered interaction graph

Definition 4 (Block Graph). Let M = 〈P, I, a, w〉 be an ordered interaction model.

We define I ′ := I ∪ {ifp : p ∈ P}, where ip ≤ ifp∀ip ∈ Ip and a(ifp) = (p, p). Basically, we
extend I with the next interaction for each agent, which only involves p.

The block graph GBM is defined as follows:

• V := {vp,i : i ∈ I ′, p ∈ a(i)}

• A := {(vp,i, vq,j) : i, j ∈ I ′, p ∈ a(i), q ∈ a(j), (i �p j ∨ i �q j)}

This graph can be weighted. Let (vp,i, vq,j) ∈ A, then the weight of (vp,i, vq,j) in G is:

wG((vp,i, vq,j)) := w(i, q)

Example 2 (Block graph). In Figure 3.2 an example of a block graph can be found. This
representation yields a another view on the ordered interaction model. In this graph, the fact
that each agent has their own sequence of interactions is stressed, with additional arcs indicating
the other party involved. In the ordered interaction graph, there were some issues with certain
contributions not being reflected in the graph. This issue is not present in this graph, at the cost
of a less elegant definition. The reason for this is that this graph will be used in Chapter 5 to
serve as the basis for Temporal PageRank. It would be undesirable to throw the last interactions
away on a pseudo-arbitrary basis.

22 CHAPTER 3. BASE MODEL OF INTERACTION INFORMATION

P1

P2

Q1

R1

R2

Q2

R3

P3

R4

P4

Q3

5

7

3

1

8

3 5

1 7

8

2

2

3

3

3

3

Figure 3.2: Example of a block graph

Definition 5 (Interaction graph). Let M = 〈P, I, a, w〉 be an ordered interaction model. The
interaction graph GIM is defined as follows:

• V := {vp : p ∈ P}

• A := {(vp, vq) : ∃i ∈ I, a(i) = (p, q)}

This graph has weights. Let (vp, vq) ∈ A, then:

w((vp, vq)) :=
∑

i∈I:a(i)=(p,q)

w(i, p)

Example 3 (Interaction graph). Figure 3.3 shows the interaction graph. Traditionally, this is
the graph that is used in literature. However, when considering an ordered interaction model,
this graph is the one that might be less obvious at first glance. The structure of the graph is
the block graph with a contraction of all nodes per agent. The weights on the arcs are the sums
of the edges in the block graph, but in the other direction. This graph does not reflect the
notion of time or order in any way. It will be the basis for the NetFlow mechanism presented in
Chapter 4.

3.2. BASE MODEL APPLIED TO TRIBLER 23

P

QR

5

39

4

3

8

Figure 3.3: Example of an interaction graph

3.2 Base model applied to Tribler

To obtain more insight into the ordered interaction model, consider the following application.
Tribler is an anonymous peer-to-peer file sharing client. In the application of the model, the

set of agents consists of Tribler clients. Each Tribler client is uniquely identifiable, but a single
real world entity could have multiple agents. In Tribler an interaction consists of two agents
uploading data to each other. The amount of work wp performed by an agent p is the amount
of megabytes uploaded to their peer (q).

In Tribler, these interactions are recorded in a distributed data structure, called the Multi-
Chain. Every client saves and signs their interactions, marked with a sequence number. They
will then request a digital signature from their peer, who will mark the interaction with their
own sequence number. These sequence numbers induce a partial ordering, where i < j, if and
only if there exists a sequence (i0, i1, . . . in), where i = i0, j = in and every pair (ik, ik+1) has a
common agent, for which the sequence number in ik is lower than in ik+1. This results in a full
order on Ip, since in that case (i, j) is a valid sequence if i occurred before j and both involve
agent p.

The above reasoning shows that the base model as presented is compatible with Tribler as
a use case. Let us further elaborate on some of the properties of the MultiChain, in order to
sketch a better image. The MultiChain has first been introduced by Norberhuis [22]. For a
detailed view into this structure, we refer to his work.

There are two main properties of MultiChain that are exploited in the mechanisms this work
builds upon. Firstly, there is the fact that a record of an interaction can only exist if both
parties agree that it is accurate. Secondly, the MultiChain is built such that there is eventual
detection of lying. In particular, if an agent spreads inconsistent interactions to different agents,
this will be detected. In terms of the model, if an agent spreads interactions such that his set
of interactions has no total order, the network will be able to detect and prove this.

There are also properties of the MultiChain that are less desirable. In particular, it is
impossible for all agents to be notified about each the interactions at the same time. In fact,
when the network grows too large, agents will not even get a full view of the network. This is
not necessarily problematic for the systems that we propose, but is something that should be
kept in mind and these properties will eventually give way to attacks on the systems.

24 CHAPTER 3. BASE MODEL OF INTERACTION INFORMATION

Chapter 4

Accounting mechanisms and
Sybil-proofness

The first reputation system that was introduced in Tribler was BarterCast [21]. BarterCast is
a system designed to deter what is described as “lazy freeriders”. Freeriders are agents that
do participate, but purposefully contribute no or very little resources to the network, but still
try to profit. In the paper introducing this mechanism, Meulpolder et al. suggest that for
most practical applications, a reputation system does not need to account for malicious users,
just for lazy users. This assertion is based in the observation that users classified as “die-hard
freeriders”, people who resort to using non-standard software to cheat the system, are relatively
uncommon in real-world systems.

BarterCast is built on voluntary reporting. All agents in the system can report to other
agents about their interactions with third parties. These reports contain information about how
much data was exchanged between the two agents. These reports are then used in a max-flow
based algorithm. The interaction graph from Chapter 3 is used. Using this graph, the subjective
reputation of j from the perspective of i is the result of an increasing function applied to the
difference of the max-flow from j to i minus the max-flow from i to j.

BarterCast has various desirable properties. Firstly, agents contributing more resources,
or consuming less resources, have a higher reputation. Secondly, it captures the concept of
transitive trust. If agent j uploads a lot of data to agent i, i will consider agents who help
j reputable. Thirdly, it is more resistant to cheaters than systems that are based on agents
self-reporting their own uploads and downloads. Finally, this is a system that does not require
the presence of any centrality.

However, BarterCast also has some flaws. In particular, there is a disincentive for agents to
report interactions in which they had a net negative contribution to the network. Even worse,
there is no mechanism to verify who is lying in the case of conflicting reports. This means
there exists a misreporting strategy that makes an agent seem better than they have performed.
Claiming that you uploaded a lot of data to one or more agents, even if that is not the case
makes other agents think you have contributed much more than you have. This is a major
weakness in the protocol and a solution has been suggested by Seuken and Parkes [27]. The
solution involves dropping the reports by any agents which are currently under consideration
for receiving services.

In addition to the reporting disincentive, there is a more fundamental problem. BarterCast
is built to transitively propagate uploads to you. In some sense, agents are more trusted if they
uploaded more to you. This is a perfectly valid construction. However, the reverse also holds. If
an agent has downloaded a lot, all agents that downloaded from them are transitively punished.
While this seems philosophical at first, there is a Sybil attack that exploits this property.

25

26 CHAPTER 4. ACCOUNTING MECHANISMS AND SYBIL-PROOFNESS

Example 4 (Sybil attack on BarterCast). Let p, s be agents. Let s contribute 1 unit of work
to i. Let s create n Sybils, s1, s2, . . . , sn and claim that each uploaded 1MB to s. Hence, the
flow from s to p is 1, the flow from p to s is 0. Now the flow from each Sybil to s1 is 0, the flow
from each Sybil to p is 1. This situation is depicted in Figure 4.1.

p s

s1

s2

sn

sk

1

1

1

1

1
1

1

1

1

1

Figure 4.1: Sybil attack on BarterCast. BarterCast scores displayed in red.

Now s1 asks for a contribution from p, and i obliges and contributes 1 unit of work. This is
shown in Figure 4.2 Now the flow between p and both s and s1 is 1 in either direction. However,
the flow from p to all other Sybils is 0 and the flow from each other Sybil to p is 1. So when
any of them ask for a contribution, p is likely to oblige.

i j

s1

s2

sn

sk

0

1

1

1

0
1

1

1

1

1

1

Figure 4.2: Sybil attack on BarterCast. BarterCast scores displayed in red.

4.1 Accounting mechanisms and DropEdge

In the paper mentioned above, Seuken and Parkes introduce the concept of an accounting
mechanism. This formalization gives a little bit more structure to the problem at hand. It is
here that the notions of subjective work graphs and choice sets are also formalized. Subjective
work graphs allow for a framework in which agents do not have a full view of the network, but
only have information about agents that they have interacted with and their peers. Choice sets
provide a mechanism to describe which set of agents are requesting service from another agent
at a fixed point in time. This concept is relevant, because the way Seuken and Parkes suggest
to patch the problem with BarterCast is to simply ignore all reports of agents in the choice set
and then compute the BarterCast score from the resultant graph. This solves a large part of the
reporting problem. Since there is no longer a disincentive to report correctly, the assumption is
that agents will cooperate and provide reports. This mechanism is called “DropEdge”. Seuken

4.2. DEFINING ACCOUNTING MECHANISMS 27

and Parkes show that this mechanism satisfies the property of being “misreport-proof”. This
property states that if an agent is in the choice set, any misreport of this agent will not lead to
their own score being increased, or the score of any other agent in the choice set being decreased.

Furthermore, it has been suggested that DropEdge does not get rid of too much valuable
information. This is supported by theorems bounding the resulting scores and the amount of
work in the subjective work graph after dropping the reports from the choice set members.
While these results seem to imply not too much information is lost, the theorems surrounding
this information loss all concern statistical claims assuming a uniform distribution over the choice
sets. This particular choice of distribution is defensible, but in real situations the distribution
over choice sets will be much less uniform, at least when monitoring over a period of time. The
reason for this is that whenever an agents requests or stops requesting work, the choice set just
changes with this one agent. Hence, there is a large correlation between choice sets in a real
world system, yielding a non-uniform distribution.

4.2 Defining accounting mechanisms

Following this work, Seuken and Parkes [26] formulated a framework that considers Sybil attacks
as well. A Sybil attack is defined by them as constructing a set of identities and interactions
between that set and the Sybils real identity. Beneficial Sybil attacks are then defined as Sybil
attacks that increase the Sybils score, either their real or one of their false identities, or decrease
the score of another agent, such that one of the Sybils identities is given priority over other
agents. We adopt most of their definitions to keep our work compatible and comparable to
theirs. All definitions before the Sybil attack profit are due to Seuken and Parkes [26]. Any
deviation from their work is noted and explained.

Definition 6 (Work Graph). A work graph G = (V,E,w) has vertices V = {1, . . . , n}, one for
each agent, and directed edges (i, j) ∈ E, for i, j ∈ V , corresponding to work performed by i for
j, with weight w(i, j) ∈ R≥0 denoting the number of units of work.

The work graph is a model of the objective truth about what happened. However, in a
distributed system, not everyone may have knowledge of all interactions, and there may be
disagreement. To this end, agent information and subjective work are considered.

Definition 7 (Agent Information). Each agent i ∈ V keeps a private history (wi(i, j), wi(j, i))
of its interactions with other agents j ∈ V , where wi(i, j) and wi(j, i) are the work performed
for j and received from j respectively.

Definition 8 (Subjective Work Graph). A subjective work graph from agent i’s perspective,
Gi = (Vi, Ei, wi), is a set of vertices Vi ⊆ V and directed edges Ei. Each edge (j, k) ∈ Ei for
which i /∈ {j, k}, is labelled with one, or both, of weights wji (j, k), wki (j, k) as known to i. For
edges (i, j) and (j, i) the associated weight is wii(i, j) = w(i, j) and wii(j, i) = w(j, i) respectively.

The definition of a subjective work graph contains a lot of machinery to deal with conflicting
information and already resolves some of the conflicts. In particular, if reports of others conflict
with the observations of the agent itself, those reports are not considered. This model does not
assume anything about the truthfulness of the reports used to constructed the subjective work
graph, but it is implied that all information concerning interactions involving agent i themselves
is correct. Furthermore, in the application to Tribler, the MultiChain structure enforces that any
report is signed by the two parties involved. Hence, it is not possible to simply make negative
reports about other parties without their consent.

28 CHAPTER 4. ACCOUNTING MECHANISMS AND SYBIL-PROOFNESS

Definition 9 (Choice Set). We let Ci ⊆ V \ {i} denote the choice set for agent i, i.e., the set
of agents that are currently interested in receiving some work from i.

Definition 10 (Accounting Mechanism). An accounting mechanism M takes as input a sub-
jective work graph Gi, a choice set Ci, and determines the score SMj (Gi, Ci) ∈ R, for any agent
j ∈ Ci, as viewed by agent i.

Note that definitions 9 and 10 consider highly decentralized mechanisms. Both are centred
around a single agent, who will then compute possibly subjective scores. Because each agent
should be able to do this, accounting mechanisms that are to be deployed in real world systems
need to be efficiently computable.

Definition 11 (Allocation Policy). Given Gi, choice set Ci and an accounting mechanism M ,
an allocation policy A is a function that maps these three objects to an agent j ∈ Ci. This
choice is denoted by A(SM (Gi, Ci)). This agent is chosen to receive a unit of work from i.

This definition is not part of the original work of Seuken and Parkes, where only the following
example is given.

Policy 1 (Winner-Take-All). The winner-take-all allocation policy (WTA) selects the agent
with the highest score, breaking any ties randomly:

A(SM (Gi, Ci)) = arg max
k∈Ci

SMk (Gi, Ci)

This is one the simplest allocation policies possible. Other options could involve splitting
the resources or more randomization.

Definitions 6 through 11 supply the framework for accounting mechanisms. Accounting
mechanisms are closely related to reputation systems. The difference between the two lies in that
reputation systems are more about trust, whereas accounting mechanisms, as the name suggests,
keep a (running) record. Often this is work, or service, quantified in some way. Accounting
systems are applicable in cases where we are less concerned with the actual identity of users,
and more concerned with the resource consumption of each agent relative to their contributions.

4.2.1 Properties of accounting mechanisms

Now that the basis for accounting mechanisms has been provided, it is possible to consider
different properties that accounting mechanisms can possess. To start off with, two properties
that might have been included in the definition, but are not quite so generic that one would
want to do this, as the lack of these properties does not necessarily imply a bad accounting
mechanism.

Property 1 (Independence of Disconnected Agents (IDA)). Let M be an accounting mechanism,
let Gi = (Vi, Ei, wi) be a subjective work graph, let Ci be a choice set. Agent k ∈ Vi is a
disconnected agent, if for this agent there are no edges in Ei, or for this agent all edges in Ei
have zero weight. By G′i = (V ′i , E

′
i, w
′
i) we denote the subjective work graph with a disconnected

agent k removed.

M satisfies “Independence of Disconnected Agents” if for any disconnected agent k, the
following holds:

∀j ∈ V ′i : SMij (Gi, Ci) = SMij (G′i, C
′
i)

4.2. DEFINING ACCOUNTING MECHANISMS 29

Property 1 simply states that scores are not affected by adding or removing agents that are
not connected to the rest of the network. On the one hand, this is a fairly reasonable property.
In particular, it provides possible routes for proofs. On the other hand, it is possible to imagine
systems in which this property does not hold. In particular, mechanisms that do assign score to
independent agents, but limit the sum of these scores, might not possess this property.

Property 2 (Anonimity (ANON)). Let M be an accounting mechanism, let Gi = (Vi, Ei, wi)
be a subjective work graph, let Ci be a choice set and let f be a graph isomorphism such that
G′i = f(Gi), C

′
i = f(Ci). M satisfies anonymity if the following condition holds:

∀j ∈ Vi \ {i} : SMij (Gi, Ci) = SMf(i)f(j)(G
′
i, C
′
i)

Property 2 is also a common property of accounting mechanisms. It essentially states that
scores can only be based on the structure of the subjective work graph. If two agents seem
exactly the same with respect to the subjective work graph, they must get the same score.
Again, it is possible to imagine accounting mechanisms without this property, but they will
need external information about agents to assign sensible differing scores. The definition given
here is slightly stronger than the original definition. In the original definition, the results may
depend on which agent is doing the computation. This definition is agnostic of the actual identity
of the computing agent.

Property 3 (Weak Transitive Trust). Accounting Mechanism M satisfies weak transitive trust
if, for every subjective work graph Gi = (Vi, Ei, wi), there exists a j ∈ Vi, after adding node k to
Gi = (Vi, Ei, wi), this leads to G′i = (V ′i , Ei, wi) with V ′i = Vi ∪ {k}, and there exists an amount
of work Wj and Wk such that if j performs Wj units of work for i, and k performs Wk units of
work for j, a report of which leads to a work graph G′′i representing this, then for every choice
set Ck that contains k, but not j, it holds that A(SM (G′′i , Ck)) = k.

Property 3 is a prescription of the way in which the accounting mechanism provides transi-
tivity. It is a desirable property since it ensures that some sort of network effects are possible.
In simple terms, it specifies that if agent A is helped significantly by agent B, and agent B in
turn was helped by agent C, then A will value C’s contribution.

Seuken and Parkes also consider a property called “misreport-proofness”. This property
states that no advantage can be obtained by reporting interactions that did not happen, or
wrongly reporting transactions that did. This property is not relevant because the MultiChain
externalizes this problem.

4.2.2 Defining Sybil attacks

At this point, this work will slightly diverge from the model used by Seuken and Parkes. Seuken
and Parkes define a Sybil attack from a single point. Only one identity is allowed to interact
with the rest of the network, and all Sybil identities can only interact with each other and the
single agent that interacts with the network. This approach is quite limiting in the sense that
it is generally easy for an attacker to interact with the real network through several identities.
Hence, the definition presented here includes the ability to perform a Sybil attack with multiple
identities. This definition collapses to the one used by Seuken and Parkes if |J | = 1.

Definition 12 (Sybil attack). Given a subjective work graph Gi = (Vi, Ei, wi). A Sybil attack
by agents J ⊆ Vi is a tuple σJ = (Vs, Es, ws) where Vs = {sJ1 , sJ2 , . . .} is a set of Sybils,
Es = {(x, y) : x, y ∈ Vs ∪ J}, and ws are the edge weights for the edges in Es. Applying the

30 CHAPTER 4. ACCOUNTING MECHANISMS AND SYBIL-PROOFNESS

Sybil attack to agent i’s subjective work graph Gi = (Vi, Ei, wi) results in a modified graph
Gi ↓ σJ = G′i = (Vi ∪ Vs, Ei ∪ Es, w′), where w′(e) = wi(e) for e ∈ Ei and w′(e) = ws(e) for
e ∈ Es.

Definition 12 deviates from the original definition by allowing a set of agents to perform an
attack. This does not seem to add much to the definition of a Sybil attack. After all, an attacker
can already create an arbitrary number of identities. However, their definition of a Sybil attack
only allows a single point where Sybils can interact with the rest of the network, which is a
pretty limited view of possible attacks. This definition does allow that, and allows for a wider
range of Sybil attacks. Note that Es may include edges to identities not controlled by Sybils.
In order to include these edges, the work actually has to be performed. For edges within Vs,

Definition 13 (Sybil attack profit). Let Gi be a subjective work graph. For all j ∈ N, let
(σJ)j be a Sybil attack on (Gi)j , where (Gi)0 := Gi and (Gi)j for j > 0 is defined by the
subjective work graph that consists of (Gi)j−1 ↓ (σJ)j and the assignment of one unit of work
to A(SM ((Gi)j−1 ↓ (σJ)j , Ci)).

Let ωn− be the sum of the amount of the work agents in J have performed for the network
after n steps, including work performed before the start of the Sybil attack. Let ωn+ be the
amount of work that agents in J or any of their Sybils obtain from the network. Any work
obtained before the start of the Sybil attack is disregarded.

The profit of this sequence of Sybil attacks is:

sup{
ωn+
ωn−

: n ∈ N, ωn− 6= 0}

If this supremum is infinite, the Sybil attack is strongly beneficial.
If the supremum exists and is strictly larger than 1, the Sybil attack is profitably weakly

beneficial.
If the supremum exists and is smaller than or equal to 1, the Sybil attack is unprofitably

weakly beneficial. This case is also known as “contributing to the network”.

Definition 13 provides a certain amount of backwards compatibility with the work of Seuken
and Parkes, while still being more distinctive with respect to the different impacts Sybil attacks
can have on the network. In addition, note that the gap between profitably weakly beneficial
and strongly beneficial may appear to be quite small. In particular, profitably weakly beneficial
attacks can be repeated by new identities for infinite profit. The difference lies in that this
infinite profit then requires infinite contribution as well. This means that for practical systems
allowing profitably weakly beneficial Sybil attacks may be good enough, but for most systems a
strongly beneficial Sybil attack would be detrimental.

4.3 Bounding Sybil attack profit

The following section describes how an accounting mechanism can be constructed which is
partially resistant to Sybil attacks, in the sense that they can be profitably weakly beneficial,
with bounded profit.

Policy 2 (Strict Winner-Takes-All). The strict winner-take-all allocation policy (SWTA) selects
the agent with the highest score, breaking ties randomly. However, the strict winner-take-all
will not select any agent when all agents have the same score.

Policy 2 defines a policy to choose an agent to receive resources given scores on resources.
This is a policy which will likely not be used in practice, but is very useful for proofs. The

4.3. BOUNDING SYBIL ATTACK PROFIT 31

consequence of this is that in real world systems a little bit of good will is necessary to bootstrap
a system based on trust. All results must therefore be considered with this caveat.

Definition 14 (NetFlow limited contribution). The NetFlow limited contribution accounting
mechanism M is defined as follows: Given a subjective work graph Gi = (Vi, Ei, wi) and choice
set Ci, agent i computes the following for each agent j: cj := max{MFGi(j, i)−MFGi(i, j), 0},
where MFGi(i, j) denotes the value of the maximum flow from i to j in Gi, where the weights
are the capacities on arcs.

Let GNi be the graph Gi modified with cj as node capacities for each node, except for ci
which should be infinite.

Now SMj (Gi, Ci) = MFGN
i

(j, i).

The first step of the NetFlow algorithm is exactly the BarterCast algorithm. However,
as opposed to BarterCast, this step is only used to settle the consumption and production of
resources. The second step determines the scores, capping it at the net contribution of each
agent. The second step still enables transitive trust, but capped by the net contribution of the
agents on the paths between the agent whose score is computed and the computing agent. This
construction still preserves some amount of transitivity in trust, but also prevents it from being
abused like in Example 4.

Example 5 (NetFlow computation). In order to provide some insight in the behaviour of the
NetFlow mechanism, let us consider a small example. Figure 4.3 depicts the interaction graph
for which a computation will be done. The computation is done from the perspective of agent
R.

P

QR

T

5

39

6

3

8

2

2

Figure 4.3: Interaction graph for a NetFlow computation

The first step in the algorithm is to compute two max-flows and subtract the flow towards
the other agent from the flow coming from that agent. This first step is shown in Figure 4.4.
Observe that agents P and T have a positive capacity, 3 and 4 respectively. This means they are
eligible for positive scores, and that they can serve as a conduit for the purposes of transitive
trust. For Q, the subtraction results in a negative number, which is then rounded to 0 to yield
the capacity.

The second step (Figure 4.5) in the NetFlow algorithm involves flows from the other agents
towards the calculating agent, respecting the node capacities calculated in the first step. This
yields the scores for each agent. Agent P is the highest ranked agent with a score of 3, then T
with a score of 2, followed by Q with a score of 0. Note that purely based on the contributions
from a neutral perspective, one might rate agent T as having contributed more than agent P ,
but due to the structure of the interaction graph, this is not the case. Because agent T is farther
away in the graph and has no direct interactions with R this is a defensible result.

32 CHAPTER 4. ACCOUNTING MECHANISMS AND SYBIL-PROOFNESS

P

QR

T

12− 9 = 3

6− 12 = −6

4− 0 = 4

5

39

6

3

8

2

2

Figure 4.4: The first step of a NetFlow computation

P

QR

T

5 (cap: 5)

0 (cap: 0)

2 (cap: 4)

5

39

6

3

8

2

2

Figure 4.5: The second step of a NetFlow computation

Theorem 1 (Properties and robustness of NetFlow). NetFlow as accounting mechanism with
a complete work graph, with SWTA as allocation policy satisfies IDA, ANON, weak transitive
trust and is robust against profitably weakly beneficial Sybil attacks.

Proof. IDA follows from the fact that flow to and from agents does not change if independent
agents are added or removed. ANON follows from the fact that relabelling nodes will not change
the flows.

Let k be the node added and let M := maxj∈Ci{SMj (Gi, Ci)} be the largest amount of
reputation in the system. Then using Wj = M + 1 and Wk = M + 1 satisfies the requirements
of weak transitive trust.

This leaves robustness against profitably weakly beneficial Sybil attacks. Consider the
amount of work performed by the agents in J after n steps of the Sybil attack, ωn−. For each unit
of work that is contributed to an agent in J during the Sybil attack, the capacity of some agent
in J that has directly contributed to the network must drop by 1 unit, possibly more agents in
J . This means that at most ωn− units of work can be contributed to agents in J after n steps.
Therefore, ωn+ ≤ ωn−, and thus:

4.3. BOUNDING SYBIL ATTACK PROFIT 33

sup{
ωn+
ωn−

: n ∈ N, ωn− 6= 0} ≤ 1

Since the computing agent possesses the complete work graph, no work can leak outside of
this graph.

Note that this result does not contradict those of Seuken and Parkes. The NetFlow mech-
anism is still vulnerable to weakly-beneficial Sybil attacks, as originally defined in their work.
This is due to the fact that the original definition is so broad that a weakly-beneficial Sybil
attack does not necessarily have to be bad for the network. In particular, this is the case if
a network only cares about work contribution and consumption, and not about possible other
external factors. Furthermore, in contrast to Drop-Edge, NetFlow is choice set independent,
which implies there is less computation for varying choice sets.

On the other hand, this algorithm computes two max-flows for every node and then one max-
flow for every node that needs to be assigned a score. This means that any algorithm that simply
computes these flows will run for up to O(n4) time, which is quite expensive. Furthermore, this
mechanism is quite strict. There is the SWTA policy involved. However, this is mainly for the
benefit of the proof. One could quite easily enable the WTA policy instead. In this case, the
implication of the theorem is that Sybil attack cannot yield a profit, with the exception of those
built on receiving resources by identities with a 0 score. This is an inconvenience, but not a
particularly big problem.

Another problem is informativeness. In general, informativeness describes that something
provides information. In this mechanism, only peers that have a strict positive contribution in
terms of flow will induce network effects. In existing networks, this subset of the population
tends to be fairly small. Hence, a large number of agents will have a zero score, which means that
SWTA would not allocate any resources to these agents. If most agents are assigned a zero score,
the mechanism does not provide any information about them. This leads us to Definition 15.

Definition 15 (Informativeness). Given an accounting mechanism M and a subjective work
graph Gi, the informativeness of M given Gi is the percentage of agents in Gi that have a
non-zero score.

4.3.1 Improving informativeness by scaling

An idea to improve the informativeness would be to weight the work performed by the other
agents higher than work consumed by them. The idea behind this scheme is that agents that
perform less work than they consume are tolerated to some degree. This is a trade-off in the sense
that this will allow weakly profitable Sybil attacks in exchange for increased informativeness of
the mechanism. In particular, a scaling would need to guarantee that it is impossible to leverage
the scaling to a strongly profitable Sybil attack.

We scale NetFlow by rating work performed by the calculating agent i lower than other
work, which is equivalent to rating all other work higher.

Definition 16 (α-NetFlow limited contribution). Given a subjective work graphGi = (Vi, Ei, wi),
choice set Ci, α ≥ 1, the α-scaled weights wi,α are defined as follows:

wi,α(e) =

{
wi(e)
α if e = (i, j) with j ∈ Vi

wi(e) otherwise

The α-NetFlow accounting mechanism is computed as the NetFlow accounting mechanism,
but on the graph G′i = (Vi, Ei, wi,α).

As a shorthand, this mechanism is denoted by α-NetFlow.

34 CHAPTER 4. ACCOUNTING MECHANISMS AND SYBIL-PROOFNESS

Theorem 2 (Robustness of α-NetFlow). α-NetFlow with SWTA is robust against weakly ben-
eficial Sybil attacks with profit more than α.

Proof. Since NetFlow is robust against weakly beneficial Sybil attacks with profit at most 1 by
Theorem 1 and the only difference between the two systems is that the contributions of agent
i are decreased by a factor α, it must be the case that the profit of a Sybil attack can be at
most α. After all, all altered interactions are with i and are therefore known to have actually
happened. Therefore, the resource consumption of any party can be at most a factor α more
than allowed by net flow, which implies an upper bound on the Sybil attack profit.

Theorem 2 provides an interesting trade-off. For α = 1, it reduces to one of the properties
in Theorem 1. For larger α, the mechanism becomes more vulnerable to Sybil attacks, but more
agents will have a positive net flow in the first computation step, meaning that more agents
will have a non-zero score, increasing the informativeness of the system. Note that considering
the accounting mechanism on a fixed graph as a function in α to a vector of scores results in
a continuous function. Furthermore, if we let α tend to infinity, this results in an accounting
mechanism where every score is the max-flow from that node to i.

There are more desirable properties of α-NetFlow. While on the surface, it seems to be about
ratio’s and relative usage, there actually is a subtle way in which this accounting mechanism
cares about absolute amounts of work performed. This is illustrated by Example 6

Example 6 (Secondary effects of scaling). In particular, consider three agents, p, q, r. Agent p
has performed 100 units of work for q and q has done the same in return. In addition, p and r
have performed 2 units of work for each other.

If agent p computes scores in 1-NetFlow, then both agents q and r are assigned a score of 0
units. However, in the case of 2-NetFlow, agent q will have a score of 50 units, whereas agent r
will have a score of 1 unit.

p

qr

100-100=02-2=0 2-1=1 100-50=50

100

1002

2

Figure 4.6: Effects of scaling NetFlow. 1-NetFlow scores in red, 2-NetFlow scores in blue.

This example illustrates that using scaling does not only increase informativeness, but also
values total volume in addition to the difference between contribution and consumption.

In a broad sense, this means that choosing a higher α will increase the score of agents which
have been around longer than yourself, or slightly shorter. This scheme creates a sort of trickle
down system, in which the levels consist of people who have had a similar total contribution
over time. Each level will prioritize contributing to agents around their level or above it. Any
surplus will trickle down to the lower levels. As a huge influx of users results in an increase in
the lower levels, the higher levels will not be impacted, and it is mainly the lower levels that
help each other.

4.4. ATTACKS ON NET-FLOW 35

4.4 Attacks on Net-Flow

Theorem 2 suggests an almost absolute defence against Sybil attacks. However, due to the
formulation of the model, and the properties of the underlying MultiChain data structure, there
are possible angles of attack.

4.4.1 Propagation slowness

One of the properties of the MultiChain includes that any interaction is signed by two parties
and then is valid immediately. There is no concept of network-wide confirmation. This means
that an attacker could approach several nodes in the network simultaneously and extract more
data from the multiple parties than they would have allowed if each party had known about the
ongoing interactions with the other peers.

The impact of this kind of attack is limited by several factors. Firstly, there’s the upload
capacity of the victims. The time it takes for interactions to propagate determines the length
of the attack, which means that the total amount of resources gained “unfairly” is at most this
time times the average upload capacity of the victims over this period. Secondly, there is the
score of the attacker. If the score of the attacker is not high enough to keep getting resources
from a victim before other interactions have propagated, then this is the limiting factor in the
attack.

In particular the first limiting factor is important, since this means the profit of an attack
can be bounded by a constant times the number of parallel connections an attacker can make.
This means it is possible to choose a lower α to account for this attack.

4.4.2 Partial network visibility

Tangentially related to the above attack is another attack that exploits the fact that if the
MultiChain network grows very large, it is not expected for every agent to have a full view of
the network. This is a desirable paradigm, as otherwise it would be trivial to spam the network
by creating and broadcasting MultiChain blocks. However, this also implies that different agents
have a different view of the network. In particular, if an attacker s participates in an interaction
I1 in which he contributes a lot of resources, and victims v1, v2 both know about I1, but are not
even aware of the existence of the other victim, then the attacker could exploit this and request
resources from both.

This is a more difficult attack to prevent. The main hurdles for actually executing it appear
to be the fact that it requires a very specific network topology. Furthermore, the attacker would
need to know the view of the network that potential victims have. A possible defence against
this attack is to incorporate randomness in which interactions to keep, or which agents to keep
track of.

4.4.3 Collusion attack

Suppose two agents both have a positive score. If they fully trust each other, they can sign
an interaction that both of them have uploaded an extremely large amount of data to each
other (say 1TB). Assuming a fluid network, in which the flows are bounded by capacities of the
source or sink, or the cuts around them. In such a network, the following effects would be the
consequence of this attack.

• These two agents have the highest scores in each others rankings.

• The capacities of both nodes become the sum of the capacities.

36 CHAPTER 4. ACCOUNTING MECHANISMS AND SYBIL-PROOFNESS

This might result in increased scores from agents that have a higher absolute contribution
than either of these agents, but lower than their sum. For agents that do not match this criterion,
the scores will likely remain the same.

The presence of this attack vector is a consequence of the desire to fight Sybils. It should be
actively undesirable to spread ones efforts over multiple identities. Since this attack effectively
merges two identities into one, it is plausible this yields a positive effect, since the inverse
operation must be negative, or at least neutral. At first sight, this might seem like a problematic
attack. However, this attack is only strictly positive for both parties as long as they have the
same ratio. Once one contributes more than the other, they will get relative negative effects.
This attack can be feasible if the involved parties have complete trust in each other. In some
cases it might be considered less of an attack, and more of a feature. For example, if a user has
multiple machines, they can link their identities in this way without reusing it across machines.
To conclude, this attack might be a risk and needs to be kept in mind in implementations, but
seems relatively harmless for the network.

4.5 Theoretical Performance of NetFlow

In order to compute the score of one other node with NetFlow, up to 2n+ 1 max-flow computa-
tions are necessary, where n is the number of nodes in a subjective work graph Gi. In case one
would compute the scores of all other nodes, 3n max-flow computations are needed. Hence, the
performance of NetFlow will depend on the max-flow algorithm used and then incur another
factor n of computational complexity. This could be mitigated by finding a way to compute
multiple flows at the same time. In this section, possibilities to improve the performance of
NetFlow will be explored. n denotes the number of nodes, m denotes the number of edges.

Well known algorithms for max-flow include Ford-Fulkerson [9], with complexity O(m|f |),
where |f | is the magnitude of the maximum flow. This is a pseudo-polynomial algorithm, since
it depends on the magnitude of numbers in the instance. The Edmonds-Karp [7] algorithm
specifies the order in which augmenting paths are considered, namely by doing a breadth-first
search. This allows the complexity to be pinned to O(nm2).

Dinitz’ algorithm [5], (also known as Dinic’s algorithm) functions in O(n2m) or O(nm log(n))
if implemented with dynamic trees. Goldberg and Tarjan introduced the preflow-push algo-
rithm [11]. This algorithm has a worst-case complexity of O(n2m). Again, this can be reduced

to O(nm log n2

m) by using dynamic trees.
Work by King, Rao and Tarjan [18] has resulted in an algorithm of order O(nm log m

n log(n)
n).

In combination with work by Orlin [23], this results in an O(nm) algorithm for max-flow. This
is the current state-of-the-art when considering single source-sink max-flow.

When we consider all-pairs max-flow, one might think a speed-up is possible. Building a
Gomory-Hu tree [12] yields a method for which n− 1 max-flow computations suffice. However,
this method only works for undirected graphs. According to Ahuja, Magnati and Orlin [1], no
method is known for all-pairs max-flow on directed graphs that uses less than O(n2) max-flow
computations. This work is from 1993, and to our knowledge this has not changed since. Note
that for the application of NetFlow, it would be necessary to compute all flows with one fixed
sink or one fixed source, which is not quite the same as the all-pairs max-flow problem.

The above research implies that using state of the art algorithms, a NetFlow algorithm
implemented with current state-of-the-art algorithms would be at least O(n2m) in the worst
case. Our implementation uses the preflow-push algorithm, yielding a worst-case complexity of
O(n3m).

In the case of Tribler, the algorithm needs to scale to at least 10.000 nodes. Anecdotal
evidence suggests that this is the desired size of a distributed network that can collectively

4.5. THEORETICAL PERFORMANCE OF NETFLOW 37

provide enough resources to provide value to all participants. The number of pairs of agents
that have interacted is the number of edges. Past measurements have shown that the number
of edges in a distributed network of this sort generally observes a power law. This would result
in a number of edges that is m = O(n).

38 CHAPTER 4. ACCOUNTING MECHANISMS AND SYBIL-PROOFNESS

Chapter 5

Considering Time

NetFlow seems quite suitable from a theoretical perspective. The guarantees against Sybil
attacks are exactly what we set out for. However, the computational complexity is high enough
that there is reason for worry. This leads to the idea that a cheaper method that uses the
temporal information in an ordered interaction model might lead to a more feasible method
that is still resistant to Sybil attacks. This chapter will detail an accounting mechanism based
on PageRank that will prevent “historical” Sybil attacks.

5.1 Random walks in the Ordered Interaction Graph

Random walks have been used in various strategies that combat Sybil attacks in one way or
another. Gkorou, Pouwelse and Epema [10] use random walks in a pure form, more for the
purposes of limiting exploration in a smart way than trying to detect Sybils. This paper in-
cludes several types of random walks and considers both the exploratory effect and the load on
important nodes in a random walk.

Kamvar, Schlosser and Garcia-Molina [16] introduce the EigenTrust algorithm, which is a
distributed way to calculate PageRank. PageRank is the stationary distribution of a random
walk [24], where the random walk is uniform over links, with a probability to jump to a random
node, specified by a distribution on those nodes. The trick in this context is to distribute the
computation over all nodes, in such a way that a portion of them can be malicious without
influencing the result.

Yu, Gibbions, Kaminsky and Xiao [29] present SybilLimit, which is a method that is specif-
ically designed for Sybil detection. Again, the basis lies in random walks and this work specifies
how to perform the desired algorithm in a distributed way. Again, spreading computational
effort through the network.

Random walks are interesting for the purpose of Sybil detection for several reasons. Firstly,
it matches certain models of behavior, as in the case of PageRank. Secondly, it is a relatively
cheap technique from a computational perspective, which is especially interesting since the main
drawback of the Net-Flow technique presented in Chapter 4 are the computing expenses.

We take the concept of PageRank and apply it to the Ordered Interaction Graph to yield a
technique that will be referred to as Temporal PageRank

Definition 17 (Temporal PageRank). Let M be an Ordered Interaction Model, with corre-
sponding Block Graph G. Let i be the agent that performs the computation.

Consider a random walk in G, where the transition probabilities are the normalized weights
of the arcs. Let this random walk have a chance of β to jump to a random node. This random

39

40 CHAPTER 5. CONSIDERING TIME

node is determined by a distribution X on nodes that represent i’s half of interactions of a single
agent i. By default, this is uniform over all nodes.

The score of a half-interaction is its probability in the stationary distribution of this random
walk. Then Temporal PageRank is an accounting mechanism, which assigns as a score to agent
j, the sum of all nodes representing j’s half of interactions.

Before considering the functionality of this mechanism, let us visit the well-definedness.

Theorem 3 (Well-definedness of Temporal PageRank). Consider a random walk as described
in the definition of Temporal PageRank.

This random walk has a unique stationary distribution, so the score of an interaction is
well-defined.

Proof. This random walk can be associated with a Markov chain, where the set of states is the
set of blocks (half-interactions). Let W be the set of nodes/states with non-zero probability in
the distribution that determines the node jumped to with chance β.

Let W be the set of nodes that can be reached by following a path in G from a node in W .
Restrict the random walk to states in W . Since every node in W is reachable from W and the
random jump means that every node can reach all nodes in W , the Markov chain induced by
this random walk, is irreducible. Furthermore, nodes in W have a self-loop, so every state is
aperiodic, so this Markov chain is aperiodic. This means that the Markov chain of the random
walk restricted to nodes in W , has a unique stationary distribution.

Since W is closed, the unique stationary distribution with 0 probability for states outside W
yields a stationary distribution for the full random walk. Since states outside W are transient.
In fact, there is a 0 probability of returning to that state. This means that all states outside
W must have a 0 probability in a stationary distribution, hence the stationary distribution is
unique.

5.2 Computational aspects of Temporal PageRank

Generally, stationary distributions of random walks are computed by the power method. This
involves repeatedly multiplying an initial probability vector with the matrix of transition prob-
abilities until the result converges. It is a desirable property to have quick convergence of this
method.

Theorem 4 (Convergence of Temporal PageRank). The error after t iterations of the power
method, for Temporal PageRank with jump probability 0 ≤ β ≤ 1, is O((1− β)t)

Proof. This follows from a result of Haveliwala and Kamvar [14]. For a matrix A = [cP + (1−
c)E]T , with P n× n row-stochastic and E a non-negative rank-one row-stochastic matrix, and
0 ≤ c ≤ 1, the second eigenvalue of A satisfies |λ2| ≤ c.

If we take c = 1 − β, P the transition probabilities without the jump, and E the matrix
representation of the distribution of the random jump, the constraints are satisfied. This means
that for the matrix used in the power method, |λ2| ≤ 1 − β. Furthermore, since this matrix is
row-stochastic, its largest eigenvalue must be λ1 = 1.

Furthermore, the error of the power method is at most O

(∣∣∣λ2λ1 ∣∣∣t), the proof of which follows

by decomposing the matrix into Jordan Normal Form.

Combining these facts yields that the error of the power method for this particular matrix
after t iterations is at most O((1− β)t).

5.3. PROPERTIES OF TEMPORAL PAGERANK 41

This result implies that the convergence is exponential, but perhaps more importantly, that
it is bounded by a term independent of the size of the matrix.

Corollary (Worst-case performance of Temporal PageRank). Computing the Temporal PageR-
ank with an error ε takes O(m log 1

ε) in the worst-case, with m the number of interactions.

Proof. The size of the matrix involved in Theorem 4 is m×m. Since each interaction has at most
2 successors, the matrix P has O(m) elements. This means that using a sparse implementation,
an iteration of the power method will take O(m) multiplications. For a certain error, the number
of iterations needed is logarithmic in 1

ε , yielding the worst-case O(m log 1
ε).

5.3 Properties of Temporal PageRank

Now allow us to consider several aspects of Temporal PageRank. It will turn out there is
not as strong of a guarantee against Sybil attacks, but historical attacks are always prevented.
Furthermore, only a weaker notion of transitive trust holds, meaning that this system is not
directly vulnerable to the general attack by Seuken and Parkes [26].

Proposition 1 (Properties of Temporal PageRank). Temporal PageRank satisfies IDA and
ANON.

Proof. Recall that these properties mean that scores are independent of disconnected agents,
and that the scores are invariant under permutations of other agents. Both of these follow
directly from the definition of PageRank, noting that in order for this to match the original
definitions, we would need to consider IDA and ANON as defined on the ordered interaction
graph, which can be done by considering the projection from the ordered interaction graph to
the interaction graph.

The two properties proven in Proposition 1 are quite trivial. What follows is slightly less so,
and one of the motivations for considering Temporal PageRank as an accounting mechanism in
the first place.

Theorem 5 (Impossibility of Historical Attacks). Consider Temporal PageRank, with W the
set of nodes to which a random jump is made. Let i be an interaction.

If there is no j ∈W such that j ≤ i, then removing i with all interactions i′ such that i′ ≤ i
does not change the Temporal PageRank score of any agent.

Proof. In the proof of Theorem 3, it is shown that nodes that are not in the closure of W have
0 probability in the stationary distribution. Since all interactions before i therefore cannot be
in the closure either, removing all of them will not affect the stationary distribution, and hence
will not affect the scores.

This begs the question how vulnerable Temporal PageRank is to attacks in general. In
particular, is it vulnerable to the style of attack that Seuken and Parkes [26] employ? The
answer is no. Not because it is particularly robust, but because it simply lacks the property
known as Transitive Trust.

Theorem 6 (Lack of Transitive Trust). Temporal PageRank with a uniform distribution for the
jump and Winner-Takes-All does not satisfy Weak Transitive Trust.

Proof. Consider an ordered interaction model M with agents i, j, l, where agent i has had some
number N interactions, alternating with j and l, where i consumes one unit of work. Since the
probability in the stationary distribution will be spread over all interactions, for large enough

42 CHAPTER 5. CONSIDERING TIME

N the probability on the most recent interactions will be small. Therefore, a new agent k (as in
Property 3), will not be able to surpass j or l by helping the other, even if that agent provides
more work to i.

Example 7 (Lack of weak transitive trust in Temporal PageRank). To further illustrate The-
orem 6, a small example. Consider the block graph in Figure 5.1. Computing from perspective
of p leads to the score of 0.246 for q and r.

If agent q then performs work for p, and k performs work for q, the result will be as in
Figure 5.2. Here, the score of k is not surpass the score of r, which means that the definition
for transistive trust is not satisfied. The result is symmetrical with respect to r and q, so the
property of weak transitive trust is not satisfied.

p1

p2

q1

r1

r2

q2

p3

q2

p4

q3

p5

r3

0.508

0.246

0.246

0

0

1

1

10

1 0

1

0

0

1

1

0

0

1

Figure 5.1: Block graph. In red, the Temporal PageRank scores of each agent, when p computes.

Theorem 6 seems to be a bad sign for Temporal PageRank. However, there still is some notion
of transitivity. In particular, the score of each agent is the sum of the stationary probabilities
on the interaction. In the computation, the jump probability is 1. When another interaction
occurs, 1 − β of these transitions become diverted to the new interactions. Suppose agent a
interacts with agent b, and b then interacts with a new agent c, where b is the only contributor
in the interaction with a and c is the only contributor in the interaction with b. In this case,
c will obtain a fraction (1 − β)2 of the stationary probability of the last interaction of agent
a. Furthermore, it will also obtain a fraction (1 − β) of the stationary probability on the last
interaction of agent b.

5.3. PROPERTIES OF TEMPORAL PAGERANK 43

p1

p2

q1

r1

r2

q2

p3

q2

p4

q3

p5

r3

p6

q4k1

k2 q5

0.403

0.310

0.163

0.125

0

0

1

1

10

1 0

1

0

0

1

1

0

0

1
100

0

0

100

100 0

0
100

Figure 5.2: Block graph. In red, the Temporal PageRank scores of each agent, when p computes.
Situation after transitive contribution.

44 CHAPTER 5. CONSIDERING TIME

Chapter 6

Experimental Evaluation

In Chapters 4 and 5 accounting mechanisms have been presented. In addition, theoretical
properties have been proven. This chapter contains experiments on a real-world data set, showing
advantages and disadvantages of each of these mechanisms.

In particular, the matter under consideration will be the properties of these mechanisms
that are harder to prove theoretically. Furthermore, these experiments are used to study the
behaviour of these accounting mechanisms in a real-world context.

The code to run any of these experiments is available through GitHub 1. This code has been
run on a dataset collected as below. This dataset is available upon request.

6.1 Data collection

Prior work by Norberhuis [22] includes an implementation of the MultiChain data structure
into Tribler. In collaboration with Bongers and Veldhuisen, this system has been brought up
to production level and released in an experimental release of Tribler, version 6.6.02. This
experimental release was ran by people with a close interest in Tribler. It was announced on the
forums and could also be found through above GitHub page. A crawler was deployed to request
MultiChain blocks from the network. A database dump from this crawler has been acquired on
the 31st of August, 2016. The software was released on the 26th of July, 2016. This means that
the data has been generated by users during a period that lasted a little over a month. During
this period 917 identities have been observed in the network. These identities are not necessarily
unique users, since users may purposefully delete their identity or users may have installed the
software on multiple machines.

6.2 NetFlow evaluation

Firstly, let us consider the NetFlow mechanism. One of the first considerations will be what the
influence of the parameter α is and how informative the mechanism is.

Figure 6.1 shows the NetFlow scoring mechanism for four peers, for three different values of
α. These peers have been selected by sorting the list of peers by their total amount of uploaded
data, and taking the peers at the 70th, 80th, 90th and 100th percentile. The peer whose point
of view is taken for the computation is marked red. Each bubble is a peer whose score is
computed. Note that the scale of the bubbles is different between the different pictures. This is

1https://github.com/pimotte/msc-experimental-code/tree/9e4eab5ea1027bb671971fab4d137c40c1c77f83
2https://github.com/Tribler/tribler/releases/tag/v6.6.0-exp1

45

46 CHAPTER 6. EXPERIMENTAL EVALUATION

due to the fact that absolute sizing would result in indiscernible bubbles for computations from
the perspective of peers with lower absolute upload and download amounts.

Upon inspection of these figures, several macro level observations come to light. The first is
that increasing α does indeed increase the informativeness of the mechanism. Higher α results in
non-zero scores for more peers. In particular, note that for α = 1 a lot of the peers with higher
upload/download have a zero score. This is likely due to the fact that scores of peers are not high
if their contributions are limited by the consumption and contribution of the calculating peer.
This effect decreases significantly. For α = 2 and α = 4, peers with absolute higher amounts of
upload and download will often be assigned a positive score.

Increasing α does come at a cost. It can be observed that for α = 1 no peers that have
a ratio of upload/download significantly below 1, have a positive score. On the contrary, for
higher α, peers that contribute less than the calculating peer might still have a non-zero score
if they have contribute about the same or more in absolute terms.

Let us now consider the informativeness of this mechanism. As described in Chapter 4, one
of the issues suspected was the lack of non-zero scores for nodes. If too many nodes are assigned
a zero score, the mechanism does not actually yield a ranking.

Figure 6.2 provides an informativeness curve. This is constructed as follows. For each peer,
the fraction of peers that have a positive score is computed. The lines in the plot are these
fractions ordered from low to high. One part of the population will never be able to increase the
informativeness by scaling. Hence, Figure 6.3 shows the same data, excluding peers that have not
downloaded any data. Observe that as α increases, so does the informativeness. Furthermore,
for higher α the set of peers with 0 informativeness decreases in size. In addition, note that
there is quite a sharp jump from 0 informativeness to around 0.7.

6.2. NETFLOW EVALUATION 47

(a) Computing agent has upload and download
around 120MB, for α ∈ {1, 2, 4}

(b) Computing agent has upload and download
around 1050MB, for α ∈ {1, 2, 4}

Figure 6.1: NetFlow scores from the perspective of several nodes, continues on next page. . .
Sizes of bubbles indicate scores (different scales). Red bubble is the computing agent.

48 CHAPTER 6. EXPERIMENTAL EVALUATION

(c) Computing agent has upload and download
around 1400MB, for α ∈ {1, 2, 4}

(d) Computing agent has upload and download
around 100GB, for α ∈ {1, 2, 4}

Figure 6.1: NetFlow scores from the perspective of several nodes, continued.
Sizes of bubbles indicate scores (different scales). Red bubble is the computing agent.

6.2. NETFLOW EVALUATION 49

Figure 6.2: Informativeness curves for different α

Figure 6.3: Informativeness curves for different α, excluding peers without downloads

50 CHAPTER 6. EXPERIMENTAL EVALUATION

6.3 Temporal PageRank Evaluation

Let us turn our attention to Temporal PageRank, starting with several examples of results of
score computations from the perspective of a variety of peers, selected in the same way as for
NetFlow, but including some of the lower quantile representatives.

Looking at Figure 6.4 leads to several insights. Firstly, note that in contrast with NetFlow,
these figures are all on the same scale, and that with the exception of a few nodes, most nodes
are assigned somewhat the same score, regardless of the performance of the computing node.
The general pattern is that nodes with both higher upload and download get a higher score
and that the absolute amount matters more than the ratio between the two. However, there
appears to be a slight overall bias towards peers that have uploaded more than that they have
downloaded.

6.3. TEMPORAL PAGERANK EVALUATION 51

Figure 6.4: Temporal PageRank computed by several peers, continues on next page. . .
Size of bubbles indicate scores. The scale is the same for all graphs. Red bubble is the computing
agent.

52 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.4: Temporal PageRank computed by several peers, continued.
Size of bubbles indicate scores. The scale is the same for all graphs. Red bubble is the computing
agent.

6.4. CROSS-MECHANISM EVALUATION 53

6.4 Cross-mechanism Evaluation

Since the end result of an accounting mechanism will often be used as a ranking, let us consider
the common peers in top fractions of rankings. It makes sense to compare each of NetFlow
and Temporal PageRank with the mechanisms that inspired them: BarterCast and PageRank.
Furthermore, it might be fruitful to inspect the same comparison for NetFlow and Temporal
PageRank in order to see if they approximate each other well.

Figure 6.5: Box plots of fraction of common peers in rankings for BarterCast and NetFlow

Figure 6.5 shows the following: On the x-axis, we have the part of the ranking that is under
consideration. For example, 10 means we compare the top 10% for both accounting mechanisms.
The corresponding box plot then depicts the data set obtained if this comparison is done for
every calculating peer. It shows the fraction in common between the two ranking methods. A
simple calculation results in the observation that if this were completely random, the medians
would lie on the line y = x. In this case, for the rankings that include up to 40% of participants
the median is about 40% in common between rankings. While this is above the baseline, it is
not an extreme overlap. This implies that there a difference, but it looks very structured. Once
the rankings get larger, there is relatively less overlap, which can be attributed to NetFlows
characteristic of cutting off scores at 0, leading to a lot of ties.

The same comparison can be found in Figure 6.6 for the mechanisms of PageRank and
Temporal PageRank. Here the correlation is abundantly clear. Only for the top 1% the median
fraction in common is below 0.7. This is not unexpected, as both of these methods have the
same underlying structure. PageRank uses less information, but there is no particular reason
Temporal PageRank would result in different rankings, since there is no reason to assume the
test set has any sort of malicious activity.

Finally, consider Figure 6.7. In this figure, the same metric is depicted, but for NetFlow
and Temporal PageRank. Note that the medians lie almost exactly on the expectation if the
rankings were random. While the outliers are clearly biased towards having more in common,
there is still very little that these rankings have in common.

54 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.6: Box plots of fraction of common peers in rankings for PageRank and Temporal
PageRank

Figure 6.7: Box plots of fraction of common peers in rankings for NetFlow and Temporal
PageRank

6.5. PERFORMANCE EVALUATION 55

6.5 Performance Evaluation

In order to evaluate the performance of both NetFlow and Temporal PageRank, the dataset
used for other experiments was again leveraged. In order to study the behaviour with increasing
an increasing number of agents and interactions, the data set was replayed, and the computation
time was measured for 1 computation for several points in the history. These points are chosen
such that both for the number of agents and the number of interactions there is a good spread
of sample points. NetFlow is considered with α = 2, Temporal PageRank with a uniform
distribution after jumping.

Figure 6.8: Computation times for NetFlow and Temporal PageRank

In Figure 6.8 the computation times are shown. For both NetFlow and Temporal PageRank,
consider the times with the number of agents and the number of interactions on the x-axis.
Also note that for each we have split the times into build time, which is the construction of the
data structure on which the algorithm is executed and the computation time of the algorithm
itself. Note the sharp increase in computation time for NetFlow as a function of the number of
interactions. This can be explained by the fact that around that moment in time, there was a
sharp jump in the number of agents, see Figure 6.9. Note that both implementations use the
Networkx library, but Temporal PageRank is one library call, whereas the NetFlow algorithm
involves O(n) calls to a max-flow subroutine. This leads to the suspicion that not only algo-
rithmic optimizations might be possible for NetFlow, as mentioned at the end of Chapter 4, but
there is also room for programmatic optimization, in particular in the reuse of data structures.
That being said, it is clear that Temporal PageRank is much easier to compute than NetFlow
for the testing data, which matches the theoretical worst-case analysis.

56 CHAPTER 6. EXPERIMENTAL EVALUATION

Figure 6.9: Number of agents in the network over time

Chapter 7

Conclusion and Discussion

In this thesis, we have considered a distributed system and proposed two accounting mechanisms
in order to compute trust and reputation in said systems. We consider the fairness, resistance
to manipulation and computability of these mechanisms.

7.1 Fairness

As mentioned, the contribution of peers to a BitTorrent system have traditionally been judged
by their upload/download ratio. In the context of a system like Tribler, this is not an accurate
measure of contribution, because the act of relaying would need to be rewarded. When elab-
orating on the research question, fairness kept vague. However, with the results presented in
Chapter 6, in particular Figures 6.1 and 6.4, this notion becomes a little more clear.

Using NetFlow with α = 1 is decidedly unfair. Agents that are not the biggest contributors
scores with an unlogical pattern. Agents that have contributed and consumed more, but still
have a net positive ratio are often assigned zero valued scores. For higher α, a clear pattern
emerges, where agents that contribute and consume more or similar amounts are assigned the
highest scores in a system. For agents that contribute less, there is a clearly visible pattern that
matches with the concept of contributing more giving a higher score. In addition, peers with
significantly lower absolute contribution and an upload/download ratio below 1 are assigned a
zero score. These patterns are consistent with a fair ranking.

Likewise, Temporal PageRank provides a somewhat fair ranking. While the patterns here
may not be as monotonous as for NetFlow, but the general trend of contributing more resulting
in a higher score is still present. What is different from NetFlow is that for Temporal PageRank,
the overall scoring of the agents is the same, with the exception of up to some 10 peers. The
agents that are the exception have a higher than average score, likely because they have had
direct interaction with the calculating agent. Also note that as the calculating peer contributes
more, this effect is spread over more agents, and the magnitude of the difference drops.

In conclusion, both NetFlow for α = 2, α = 4 and Temporal PageRank provide fair mecha-
nisms, whereas Net-Flow with α = 1 does not.

7.2 Resistance to Manipulation

One of the major advantages of NetFlow would have to be that it is resistant to profitable
Sybil attacks, as detailed in Theorem 1. This becomes a little less impressive if we take into
account that α = 1 does not yield a fair accounting mechanism. That being said, taking α > 1
will still yield an accounting mechanism with a well-established bound on the profits a Sybil

57

58 CHAPTER 7. CONCLUSION AND DISCUSSION

attack. Temporal PageRank, by contrast, does not have such a particular guarantee. It is not
susceptible to the particular attack of Seuken and Parkes’ impossibility result. However, it is
vulnerable to some of the known attacks on normal PageRank. Temporal PageRank, however
does have the resistance against historical attacks, which implies that only interactions after the
first attack edge are considered.

7.3 Performance

In Figure 6.8 the performance of both NetFlow and Temporal PageRank are shown. Recall the
theoretical analysis, in which the NetFlow is shown to have worst case computational cost of
O(n3m) and Temporal PageRank O(m log 1

ε). For a constant error in the PageRank computa-
tion, this comes down to a difference of factor of n3. This certainly shows in the performance.
For Temporal PageRank, the time to build the data structure is in fact comparable to the actual
computation time, whereas in the case of NetFlow, the computation time quickly eclipses the
time to build the data structure. In comparison, Temporal PageRank is much more feasible to
compute. It might depend on the actual system whether these algorithms are fast enough.

In the case of Tribler, the performance of Temporal PageRank for the size of the test set
is good enough for the applications since it is at most 12 seconds, where 30 seconds is the
established boundary. For actual application it is not quite performant enough still, since it
is desirable for the network to be able to scale more. The test set contained a little over 900
agents, where scaling to 10.000 would be the goal. Also note that the complexity depends on
the number of interactions, which will always keep growing over time, even if the number of
agents is stable. NetFlow can take over 6 minutes, which is too long for practical application
in Tribler. Computational tricks would be needed to ensure Temporal PageRank scales to the
desired levels. In case of NetFlow, just computational tricks are unlikely to make it fast enough
for practical application in Tribler and the algorithm itself needs reconsideration.

7.4 General conclusion

The research question asked if an accounting mechanism could use confirmed information about
interactions and their order allow the design of a fair, manipulation-resistant and efficient rep-
utation system. The answer these two mechanisms and their study leads to is a tentative
“yes”. Temporal PageRank is fair, and without question performant. It also has some desirable
manipulation-resistant properties. NetFlow, with α > 1 looks to yield a fair accounting mecha-
nism. Furthermore, it has some of the strongest Sybil-resistant properties of known accounting
mechanisms. However, the fact that a state-of-the-art implementation would still take O(nm2)
makes it not performant enough for some applications.

7.5 Discussion

In this discussion, we consider two directions of future work. One is the possibility of future
research on the mechanisms themselves, the other is the broader perspective in which this
research can be placed, including other application areas.

7.5.1 Future Research

Both the mechanisms presented have areas where improvement can be obtained. In the case of
Temporal PageRank, a more precise study should be done towards its fairness. Furthermore,
since its resistance against Sybil attacks is not quite as strong as NetFlows, more research should

7.5. DISCUSSION 59

be done into hardening the theoretical resistance against Sybil attacks, or to study what Sybil
attacks are possible and determine the risks involved.

As for NetFlow, most of the improvement is to be gained in performance. A smart way to
compute more flows in one go, or a slightly different mechanism that is easier to compute, but has
the same theoretical resistance against Sybil-attacks is desirable. The reference implementation
can also be improved to see if programming more efficiently would make this method suitable
for more systems.

7.5.2 This Research in Broader Context

The accounting mechanisms presented here have been designed with the use case of Tribler in
mind. In this case, a resource is exchanged (data), but it is not of extreme importance that
there is an exact balance. In other distributed systems, a currency might be involved. In this
case, there is still a resource involved, but the balance is important. In other applications, like
social networks, there is no resource involved at all, and “trusting someone” is often a symmetric
relationship.

Systems like NetFlow and Temporal PageRank could be applicable in other distributed
systems. Depending on the exact properties of said system, one of them could be applied with
little alteration, but in other cases it might require non-trivial customizations. One example is
the application to a peer-to-peer lending system. If the interactions represent real money, the
attacks on NetFlow from Section 4.4 present a very real risk.

60 CHAPTER 7. CONCLUSION AND DISCUSSION

Bibliography

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory,
algorithms, and applications. 1993.

[2] UN General Assembly. Universal declaration of human rights. UN General Assembly, 1948.

[3] Bram Cohen. The bittorrent protocol specification, 2008.

[4] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. Technical report, DTIC Document, 2004.

[5] Yefim Dinitz. Dinitz’ algorithm: The original version and Even’s version. In Theoretical
computer science, pages 218–240. Springer, 2006.

[6] John R Douceur. The sybil attack. In International Workshop on Peer-to-Peer Systems,
pages 251–260. Springer, 2002.

[7] Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. Journal of the ACM (JACM), 19(2):248–264, 1972.

[8] Assafa Endeshaw. Internet regulation in China: the never-ending cat and mouse game 1.
Information & Communications Technology Law, 13(1):41–57, 2004.

[9] Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian journal
of Mathematics, 8(3):399–404, 1956.

[10] Dimitra Gkorou, Johan Pouwelse, and Dick Epema. Trust-based collection of information
in distributed reputation networks. In Proceedings of the 30th Annual ACM Symposium on
Applied Computing, pages 2312–2319. ACM, 2015.

[11] Andrew V Goldberg and Robert E Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988.

[12] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[13] Garrett Hardin. The tragedy of the commons. Journal of Natural Resources Policy Research,
1(3):243–253, 2009.

[14] Taher Haveliwala and Sepandar Kamvar. The second eigenvalue of the Google matrix.
Stanford University Technical Report, 2003.

[15] Shanthi Kalathil and Taylor C Boas. The internet and state control in authoritarian regimes:
China, Cuba and the counterrevolution. First Monday, 6(8), 2001.

61

62 BIBLIOGRAPHY

[16] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The eigentrust algo-
rithm for reputation management in p2p networks. In Proceedings of the 12th international
conference on World Wide Web, pages 640–651. ACM, 2003.

[17] Kai Kimppa and Farid Shirazi. The emancipatory role of information and communication
technology: A case study of internet content filtering within Iran. Journal of Information,
Communication and Ethics in Society, 8(1):57–84, 2010.

[18] Valerie King, Satish Rao, and Rorbert Tarjan. A faster deterministic maximum flow algo-
rithm. In Proceedings of the third annual ACM-SIAM symposium on Discrete algorithms,
pages 157–164. Society for Industrial and Applied Mathematics, 1992.

[19] Jian Liang, Rakesh Kumar, Yongjian Xi, and Keith W Ross. Pollution in p2p file sharing
systems. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies., volume 2, pages 1174–1185. IEEE, 2005.

[20] David Lyon. Surveillance, Snowden, and big data: Capacities, consequences, critique. Big
Data & Society, 1(2):2053951714541861, 2014.

[21] Michel Meulpolder, Johan A Pouwelse, Dick HJ Epema, and Henk J Sips. Bartercast: A
practical approach to prevent lazy freeriding in p2p networks. In Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–8. IEEE, 2009.

[22] Steffan D Norberhuis. Multichain: A cybercurrency for cooperation, 2015.

[23] James B Orlin. Max flows in o (nm) time, or better. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 765–774. ACM, 2013.

[24] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: bringing order to the web. 1999.

[25] Frank La Rue. Report of the special rapporteur on the promotion and protection of the
right to freedom of opinion and expression. Technical report, Human Rights Council of the
United Nations, 2011.

[26] Sven Seuken and David C Parkes. Sybil-proof accounting mechanisms with transitive trust.
In Proceedings of the 2014 international conference on Autonomous agents and multi-agent
systems, pages 205–212. International Foundation for Autonomous Agents and Multiagent
Systems, 2014.

[27] Sven Seuken, Jie Tang, and David C Parkes. Accounting mechanisms for distributed work
systems. In Proceedings of the 24th AAAI Conference on Artificial Intelligence. AAAI Press,
2010.

[28] International Telecommunications Union. Ict facts and figures 2016. Technical report, ITU,
2016.

[29] Haifeng Yu, Phillip B Gibbons, Michael Kaminsky, and Feng Xiao. Sybillimit: A near-
optimal social network defense against sybil attacks. In 2008 IEEE Symposium on Security
and Privacy, pages 3–17. IEEE, 2008.

