

25 April, 2025

Tutte's theorem as an educational formalization project

Pim Otte PhD Candidate

Outline

Introduction

Motivation

Tutte's theorem

Educational formalization project

Conclusion

Outline

Introduction

Motivation

Tutte's theorem

Educational formalization project

Conclusion

About me

- Pim Otte
- PhD candidate at Utrecht University & Technical University of Eindhoven
- Topic "Type Theory for Education"
- Supervisors: Johan Commelin, Paige Randall North & Jim Portegies
- Webpage: https://pim.otte.dev

Торіс

- Formalization of Tutte's theorem in Lean 4, almost merged to mathlib
- Framework for educational formalization projects

Outline

Introduction

Motivation

Tutte's theorem

Educational formalization project

Conclusion

• Why Tutte's theorem?

- Why Tutte's theorem?
 - Characterizes perfect matchings in graphs

- Why Tutte's theorem?
 - Characterizes perfect matchings in graphs
 - Formalization provides basis for graph algorithms

- Why Tutte's theorem?
 - Characterizes perfect matchings in graphs
 - Formalization provides basis for graph algorithms
- Framework for educational formalization projects

- Why Tutte's theorem?
 - Characterizes perfect matchings in graphs
 - Formalization provides basis for graph algorithms
- Framework for educational formalization projects
 - Asymmetry in number of teachers vs students

- Why Tutte's theorem?
 - Characterizes perfect matchings in graphs
 - Formalization provides basis for graph algorithms
- Framework for educational formalization projects
 - Asymmetry in number of teachers vs students
 - Bridging the gap between "TPIL" and "blueprint projects"

- Why Tutte's theorem?
 - Characterizes perfect matchings in graphs
 - Formalization provides basis for graph algorithms
- Framework for educational formalization projects
 - Asymmetry in number of teachers vs students
 - Bridging the gap between "TPIL" and "blueprint projects"
- Shout-outs:
 - Mathlib reviewers; Yaël Dillies, Bhavik Mehta, Kyle Miller

- Why Tutte's theorem?
 - Characterizes perfect matchings in graphs
 - Formalization provides basis for graph algorithms
- Framework for educational formalization projects
 - Asymmetry in number of teachers vs students
 - Bridging the gap between "TPIL" and "blueprint projects"
- Shout-outs:
 - Mathlib reviewers; Yaël Dillies, Bhavik Mehta, Kyle Miller
 - Related work: Formalization of graph algorithms in Isabelle/HOL by Abdulaziz [Abd24].

Outline

Introduction

Motivation

Tutte's theorem

Educational formalization project

Conclusion

Perfect matching

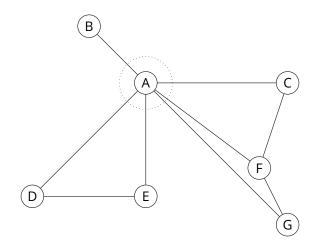
- def IsMatching (M : Subgraph G) : Prop := $\forall \{ v \}, v \in M.verts \rightarrow \exists ! w, M.Adj v w$
- def Is
Spanning (G' : Subgraph G) :
 Prop := $\forall \ v$: V, $v \in$ G'.verts
- def IsPerfectMatching (M : G.Subgraph) : Prop := M.IsMatching ∧ M.IsSpanning

Tutte's theorem

Theorem (Tutte, 1947).

A graph G has a perfect matching if and only if for any subset $U \subseteq V$ the graph G - U has at most |U| components of odd size.

Tutte Violator



Tutte violator

Definition (Tutte violator).

A subset |U| such that G - U has more than |U| components of odd size.

def IsTutteViolator (G: SimpleGraph V) (u : Set V) : Prop := u.ncard < ((⊤ : G.Subgraph).deleteVerts u).coe.oddComponents.ncard

Formal proof of Tutte's theorem

```
theorem tutte [Fintype V] :
  (∃ (M : Subgraph G) , M.IsPerfectMatching) ↔
  (∀ (u : Set V), ¬ G.IsTutteViolator u) := by
classical
refine ⟨by rintro ⟨M, hM⟩; apply not_IsTutteViolator hM, ?_⟩
contrapose!
intro h
by_cases hvOdd : Odd (Fintype.card V)
  · exact ⟨∅, isTutteViolator_empty hvOdd⟩
  · exact exists_TutteViolator h (Nat.not_odd_iff_even.mp hvOdd)
```


Sub-proof structure

Lemma.

If no perfect matching exists, then a Tutte violator exists.

Proof structure.

- Work with an edge-maximal counterexample
- Split into two cases. The graph remaining after removing the "universal vertices" either:
 - 1. decomposes into cliques.
 - 2. does not decompose into cliques.

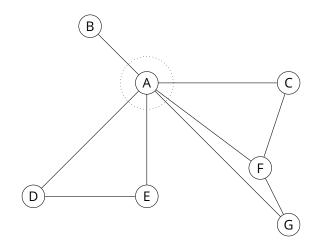
Universal vertices

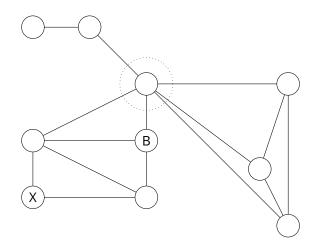
Definition (Universal Vertices).

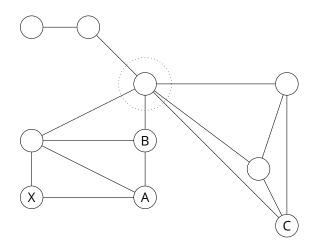
The set of vertices adjacent to all other vertices.

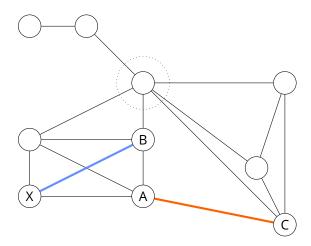
def universalVerts (G : SimpleGraph V) : Set V := $\{v : V \mid \forall |w|\}, v \neq w \rightarrow G.Adj w v\}$

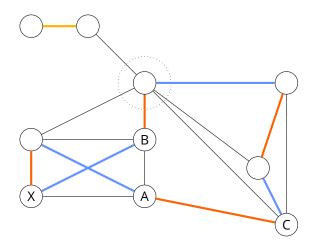
Universal vertices

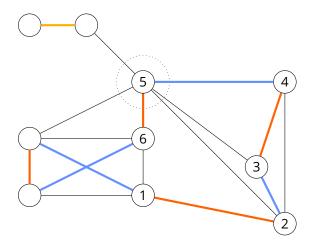


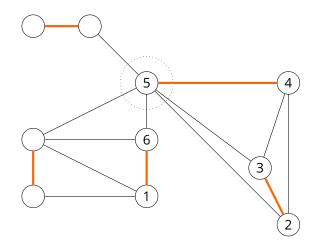












- Construct cycles as symmetric difference of perfect matchings
- Show that these cycles are alternating
- Show that symmetric difference with alternating graph preserves perfect matching
- Construct specific alternating cycle needed.

Symmetric difference: SimpleGraph vs Subgraph

 for H H' : Subgraph G it holds that (H △ H').verts = (H \ H').verts ∪ (H' \ H).verts

Symmetric difference: SimpleGraph vs Subgraph

- for H H' : Subgraph G it holds that (H △ H').verts = (H \ H').verts ∪ (H' \ H).verts
- So, for two perfect matchings (H \bigtriangleup H').verts = \emptyset
- This problem doesn't occur for the symmetric difference on SimpleGraphs

IsCycles and IsAlternating

IsCycles is really cycles

```
lemma
    IsCycles.exists_cycle_toSubgraph_verts_eq_connectedComponentSupp
    [Finite V] {c : G.ConnectedComponent} (h : G.IsCycles)
    (hv : v \in c.supp) (hn : (G.neighborSet v).Nonempty) :
  \exists (p : G.Walk v v), p.IsCycle \land p.toSubgraph.verts =
    c.supp := by
classical
obtain \langle w, hw \rangle := hn
obtain (u, p, hp) :=
    SimpleGraph.adj_and_reachable_delete_edges_iff_exists_cycle.mp
  have hvp : v \in p.support :=
    SimpleGraph.Walk.fst_mem_support_of_mem_edges _ hp.2
have : p.toSubgraph.verts = c.supp := by sorry
use p.rotate hvp
rw [\leftarrow this]
exact (hp.1.rotate _, by simp_all)
```


Symmetric difference of matchings is alternating

```
lemma Subgraph.IsPerfectMatching.isAlternating_symmDiff_left
{M' : Subgraph G'} (hM : M.IsPerfectMatching)
(hM' : M'.IsPerfectMatching) :
(M.spanningCoe △ M'.spanningCoe).IsAlternating
M.spanningCoe := by
intro v w w' hww' hvw hvw'
obtain ⟨v1, hm1, hv1⟩ := hM.1 (hM.2 v)
obtain ⟨v2, hm2, hv2⟩ := hM'.1 (hM'.2 v)
simp only [symmDiff_def] at *
aesop
```


Symmetric difference of matchings are cycles

```
lemma Subgraph.IsPerfectMatching.symmDiff_isCycles
  {M : Subgraph G} {M' : Subgraph G'} (hM :
    M.IsPerfectMatching) (hM' : M'.IsPerfectMatching) :
  (M.spanningCoe \triangle M'.spanningCoe).IsCycles := by
intro v
obtain \langle w, hw \rangle := hM.1 (hM.2 v)
obtain \langle w', hw' \rangle := hM'.1 (hM'.2 v)
simp only [symmDiff_def, Set.ncard_eq_two, ne_eq,
    imp_iff_not_or, Set.not_nonempty_iff_eq_empty,
  Set.eq_empty_iff_forall_not_mem,
    SimpleGraph.mem_neighborSet, SimpleGraph.sup_adj,
    sdiff_adj,
  spanningCoe_adj, not_or, not_and, not_not]
by_cases hww': w = w'
· simp_all [← imp_iff_not_or, hww']
· right
 use w, w'
  aesop
```

Symmetric difference along alternating cycles preserves matching

```
lemma Subgraph.IsPerfectMatching.symmDiff_of_isAlternating
    (hM : M.IsPerfectMatching) (hG' : G'.IsAlternating
    M.spanningCoe) (hG'cyc : G'.IsCycles) : (⊤ : Subgraph
    (M.spanningCoe \triangle G')).IsPerfectMatching := by
rw [Subgraph.isPerfectMatching_iff]
intro v
simp only [toSubgraph_adj, symmDiff_def,
    SimpleGraph.sup_adj, sdiff_adj, Subgraph.spanningCoe_adj]
obtain \langle w, hw \rangle := hM.1 (hM.2 v)
by_cases h : G'.Adj v w
\cdot -- Inside cycle, so other edge is in matching
  obtain (w', hw') := hG'cyc.other_adj_of_adj h
 sorry
· -- Outside cycle
  sorry
```


Lessons from formalization

- Work in the "correct" ambient type
- Develop the right abstraction

Outline

Introduction

Motivation

Tutte's theorem

Educational formalization project

Conclusion

• Reason for formalizing Tutte's theorem

- Reason for formalizing Tutte's theorem
- Gap between available "teachers" and "students"

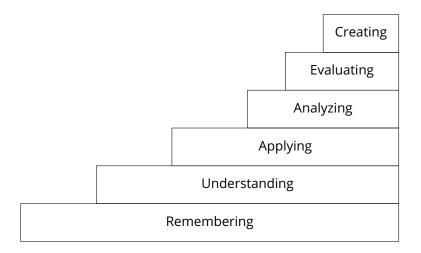
- Reason for formalizing Tutte's theorem
- Gap between available "teachers" and "students"
- Gap between "TPIL", minor contributions and "blueprint projects"

- Reason for formalizing Tutte's theorem
- Gap between available "teachers" and "students"
- Gap between "TPIL", minor contributions and "blueprint projects"
- Goal: Enable educational formalization projects with minimal teacher input.

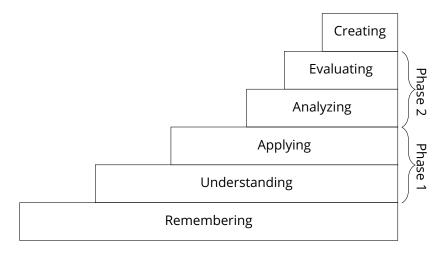
The framework

	Phase 1	Phase 2
Deliverable	Initial	Polished
	formalization	formalization
Learning goals	Working with	Refactoring
	an ITP	formal proofs
	Proving goals	
	Formulating	Architecting
	intermediate	formal proofs
	goals	
Teacher role	Provide goal	Review
	statement	formalization
	Recommend	
	resources	
Student role	Focus on	Attention for
	learning	details
		Attention for
		structure

Intermezzo: Bloom's taxonomy



Intermezzo: Bloom's taxonomy



Tutte's theorem as an educational formalization project

	Phase 1	Phase 2
Deliverable	5000 lines of	36 Pull
	spaghetti	Requests
Learning goals	Typeclass	Classical
	Synthesis	approach
	have-tactic	Golfing
	structure	
Teacher role	Provided goal	Reviewed
Lean	statement	formalization
Community		
	Recommended	
	resources	
Student role	Focus on	Refactored to
Pim Otte	getting a	mathlib-level
	compiling proof	

• Student: In the Goldilocks zone of Bloom's taxonomy

- Student: In the Goldilocks zone of Bloom's taxonomy
- Teacher:
 - Select suitable goal

- Student: In the Goldilocks zone of Bloom's taxonomy
- Teacher:
 - Select suitable goal
 - Provide resources

- Student: In the Goldilocks zone of Bloom's taxonomy
- Teacher:
 - Select suitable goal
 - Provide resources
 - Review in the second phase

- Student: In the Goldilocks zone of Bloom's taxonomy
- Teacher:
 - Select suitable goal
 - Provide resources
 - Review in the second phase
 - Communicate framework to students

Outline

Introduction

Motivation

Tutte's theorem

Educational formalization project

Conclusion

Conclusion

• Formalized Tutte's theorem

Conclusion

- Formalized Tutte's theorem
- Proposed a framework for educational formalization projects

Conclusion

- Formalized Tutte's theorem
- Proposed a framework for educational formalization projects
- Opportunities: Formalizing graph algorithms, testing the framework in traditional setting.

References

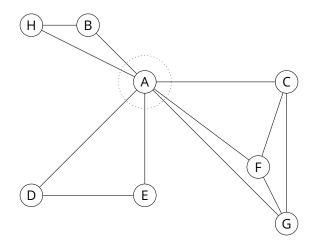
Mohammad Abdulaziz, A formal correctness proof of edmonds' blossom shrinking algorithm, 2024.

Utrecht Sharing science, University shaping tomorrow

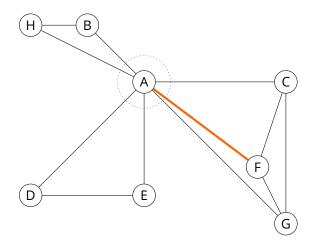
Thanks to Yaël Dillies, Bhavik Mehta, Kyle Miller and other mathlib reviewers.

pim.otte.dev

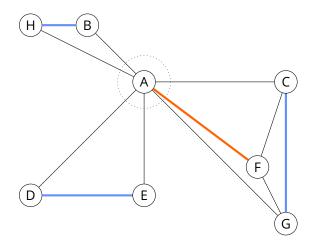
Oops! All cliques



Oops! All cliques



Oops! All cliques



Formalization: Oops! All cliques

```
theorem Subgraph.IsPerfectMatching.exists_of_isClique_supp (hveven:
     Even (Fintype.card V)) (h: ¬G.IsTutteViolator G.universalVerts) (h': ∀
     (K:G.deleteUniversalVerts.coe.ConnectedComponent),
     G.deleteUniversalVerts.coe.IsClique K.supp) : ∃ (M : Subgraph G),
     M.IsPerfectMatching := by
classical
obtain (M, (hM, hsub)) :=
     IsMatching.exists_verts_compl_subset_universalVerts h h'
obtain (M', hM') := ((G.isClique_universalVerts.subset
     hsub).even_iff_exists_isMatching
(Set.toFinite _)).mp (by simpa [Set.even_ncard_compl_iff hveven,
     -Set.toFinset_card, <- Set.ncard_eq_toFinset_card'] using
     hM.even_card)
use M | | M'
have hspan : (M \sqcup M').IsSpanning := by
rw [Subgraph.isSpanning_iff, Subgraph.verts_sup, hM'.1]
exact M.verts.union_compl_self
exact (hM.sup hM'.2 (by
simp only [hM.support_eq_verts, hM'.2.support_eq_verts, hM'.1,
     Subgraph.verts_sup]
exact (Set.disjoint_compl_left_iff_subset.mpr fun {|a|} a \mapsto a).symm), hspan
```


Utrecht Sharing science, University shaping tomorrow

Thanks to Yaël Dillies, Bhavik Mehta, Kyle Miller and other mathlib reviewers.

pim.otte.dev