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Abstract5

In this work, we present two results: The first result is the formalization of Tutte’s theorem in Lean, a6

key theorem concerning matchings in graph theory. As this formalization is ready to be integrated in7

Lean’s mathlib, it provides a valuable step in the path towards formalizing research-level mathematics8

in this area. The second result is a framework for doing educational formalization projects. This9

framework provides a structure to learn to formalize mathematics with minimal teacher input.10

This framework applies to both traditional academic settings and independent community-driven11

environments. We demonstrate the framework’s use by connecting it to the process of formalizing12

Tutte’s theorem.13
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1 Introduction22

In this work, we present the formalization of Tutte’s theorem in Lean along with a framework23

for educational formalization projects. Tutte’s theorem characterizes the existence of perfect24

matchings in graphs. This theorem is a staple in undergraduate-level courses on graph theory25

and is specifically core to the field of matching theory. The formalization of this theorem and26

its proof techniques is an essential step toward the formalization of modern graph theory.27

We present the formalization of Tutte’s theorem as a polished formalized proof that has been28

nearly completely integrated to Lean’s mathlib.29

With the advent of formalization in mathematics, the issue of training people to do30

formalization arises. Since formalization is a optional technology in most of mathematics,31

there is an additional group of students besides the traditional group of mathematics students:32

trained mathematicians who want to learn only formalization. Furthermore, there currently33

is an imbalance: The group of capable teachers is limited compared to the group of potential34

students. This raises the question: how do we teach both aspiring and current mathematicians35

how to formalize a piece of mathematics, while minimizing teacher effort?36

The first step in this training process is already facilitated by the various formalization37

communities through the availability of several tutorials and entry-level materials. For38

example, in the Lean community, some options include: Theorem Proving in Lean [5],39

Functional Programming in Lean [7] and Mathematics in Lean [6]. This is why in this work40

we focus on the second step: Training beginners to be able to execute a larger formalization41

project.42

As this second step, we present a framework for educational formalization projects. This43

framework consists of two phases: an initial formalization phase and a subsequent polishing44
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phase. We propose some necessary conditions under which this framework is appropriate, such45

as the expected initial level of the student, requirements on teacher ability and requirements46

on project choice. Using the formalization of Tutte’s theorem as an example, we show how47

this framework worked in practice. In this example, the author was the student and the48

Lean community functioned as a teacher. This shows the flexibility of the framework: The49

teacher and student roles can also be assumed by volunteer mentors and learning enthusiasts;50

therefore, throughout this work we use the terms ‘educational’, ‘teacher’ and ‘student’ in51

their broadest possible senses: concerning the process of learning, anyone taking the role of52

teacher and anyone taking the role of student, respectively.53

In the remainder of this introduction, we discuss Tutte’s theorem, its relevance for54

formalization, summarize the framework, discuss related work and provide a reading guide55

for the rest of the paper.56

1.1 Tutte’s theorem57

We provide the statement and a proof sketch of Tutte’s theorem to give context for the58

formalization in Section 2. In 1947, Tutte proved his characterization of finite graphs with59

perfect matchings [32]. A perfect matching in a graph G is a subgraph of G such that all60

vertices have degree one, or equivalently a partition of the vertices into pairs for which each61

pair is adjacent in G.62

▶ Theorem 1 (Tutte, 1947). A graph G has a perfect matching if and only if for any subset63

U ⊂ V the graph G − U has at most |U | components of odd size.64

A subset U ⊆ V such that the graph G−U has more odd components than |U | is referred65

to as a Tutte violator. The necessity of the condition is fairly immediate: A Tutte violator66

immediately blocks the existence of a perfect matching, because at least one vertex in each67

odd component must be uniquely matched to a node in U . By the pigeonhole principle, this68

cannot occur.69

Lovász proved the sufficiency with the following structure (see Theorem 2.2.1 of Graph70

Theory by Diestel [9] for a full proof). Argue by contraposition: Take a graph without a71

perfect matching and show a Tutte violator exists. Without loss of generality, we can assume72

that adding any edge to this graph results in existence of a perfect matching. In case the73

total number of vertices is odd, the empty set yields a Tutte violator. Otherwise, we argue by74

contradiction and assume that the set of all vertices that are connected to all other vertices75

(also referred to as the set of universal vertices) is not a Tutte violator. We consider the graph76

obtained by removing these vertices and examine whether the remainder consists solely of77

cliques. If it does, we explicitly construct a perfect matching by leveraging these cliques. If it78

does not, then we obtain two perfect matchings on slightly bigger graphs and combine them79

to obtain a perfect matching on the original graph. Combining these matchings involves80

both the symmetric difference of graphs, and cycles with the property that exactly every81

other edge is also in a particular matching. We treat the proof in more detail along with the82

formalization in Section 2.83

Tutte’s theorem is a worthwhile target for formalization for two reasons. First, it is a core84

theorem in the area of matching theory. It is the precursor of the Gallai–Edmonds Structure85

Theorem (see Theorem 3.2.1 of Matching Theory by Lovász and Plummer [20]), which yields86

the Gallai-Edmonds decomposition. This decomposition basically pinpoints a canonical87

Tutte violator and is a powerful tool that characterizes the structure of maximum matchings.88

Second, combinatorics has a history of proofs assisted by brute force computer search, which89

generally are considered to be contentious. The proof of the Four Colour theorem by Appel90
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and Haken [4] serves as a prime example. The computer-checked proof in the Rocq prover1
91

of the Four Colour theorem in 2008 by Gonthier [14] provided additional certainty about92

the truth of this theorem. Gonthier’s version provided a formal proof of a sufficient brute93

force search along with the formal version of the more traditional mathematical part. The94

proof of the boolean Pythagorean triples problem by Heule, Kullman and Marek [17] uses a95

SAT solver and provides a certificate of unsatisfiability. This is much less contentious than96

a generic brute force search, because the certificate can be checked. Initial inspiration for97

choosing matching theory as an area for formalization stemmed from work by Otte [25],98

where a proof of existence of exponentially many perfect matchings in cubic graphs (by99

Esperet, Kardoš and Král [11]) was extended using brute force search. While we do not100

consider this last work relevant enough to warrant full formalization, these instances show101

that combinatorics as a whole and specifically graph theory are amenable to proofs using102

computer assistance, and therefore warrant a kind of formalization.103

1.2 The framework104

Formalization of mathematics is beginning to play a greater role in research-level mathematics.105

Recent work by Gowers, Green, Manners and Tao [15] proving the polynomial Freiman-Ruzsa106

conjecture was formalized before the review process for the final publication had concluded.2107

In certain branches of theoretical computer science, formalizing work is not only expected,108

but a natural part of the research process, because of the substantial mechanical detail needed109

for proofs. Thus, these developments suggest that teaching formalization to mathematicians110

on a larger scale is worthwhile.111

We propose a framework for educational formalization projects. An overview of the112

framework is available in Table 1. Given the imbalance between capable teachers and113

potential students, we provide a framework that minimizes teacher input. This imbalance is114

not just in terms of number of people, and applies more broadly than the academic setting.115

In the Lean Zulip,3 the six most active streams are (with expected number of messages per116

week4) “new members” (730), “mathlib4” (670), “lean4” (380), “general” (330), “rss” (310)117

and “Is there code for X?” (250). Note that “new members” and “Is there code for X?” are118

streams that largely consist of more experienced community members helping newer ones.119

This implies that a significant chunk of effort goes towards onboarding newer members in120

the community and the process of formalization. Hence, the imbalance is also a factor in121

community-driven education, further strengthening the need for a framework that facilitates122

learning formalization with minimal teacher input.123

This goal is achieved by structuring projects in two distinct phases: Getting to an initial124

formalization and getting to a polished formalization. This structure matches the learning125

process of the student, because these goals correspond with lower-order learning goals and126

higher-order learning goals, respectively. This means that students are enabled to first grasp127

the basics before moving on to the more advanced material. For teachers, the structure128

clearly indicates how to direct their efforts. In the first phase, their role is restricted to129

providing a good starting point and recommending resources. The more labor-intensive task130

of reviewing formalizations is relegated to the second phase. Postponing this task until the131

1 Formely known as Coq
2 Formalization completed on 5-12-2023: https://mathstodon.xyz/@tao/111526765350663641 Referee

reports received on 24-4-2024: https://mathstodon.xyz/@tao/112333043706335214
3 https://leanprover.zulipchat.com
4 retrieved on March 8 2025

https://mathstodon.xyz/@tao/111526765350663641
https://mathstodon.xyz/@tao/112333043706335214
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student is ready to take full advantage of the feedback helps to concentrate teacher effort132

where it is most effective. Since teacher input is minimized, this framework offers a way to133

train a large number of formalizers while placing minimal strain on available teachers.134

Phase 1 Phase 2
Deliverable Initial formalization Polished formalization

Learning goals

Working with an ITP
Proving goals
Formulating intermediate goals

Refactoring formal proofs
Architecting formal proofs

Teacher role
Provide goal statement
Recommend resources

Review formalization

Student role Focus on learning
Attention for details
Attention for structure
Finish product

Table 1 Framework overview

1.3 Related work135

Formalization of graph theory remains an active research area. However, until now, Tutte’s136

theorem had not been formalized in Lean. We provide an overview of recent developments in137

formalization of graph theory in various systems. Formalizations of graph theory in Rocq138

include Dilworth’s theorem, Hall’s marriage theorem and the Erdős-Szekeres theorem in 2017139

by Singh [27] and the Weak Perfect Graph Theorem in 2020 by Singh and Natarajan [28]. In140

Isabelle/HOL multiple libraries for graph theory have been published: Graph Theory with a141

release in 2013 by Noschinkski [24], which contains directed graphs, Undirected Graph Theory142

with a release in 2022 by Edmonds [10]. The latter has a transitive dependency on the former.143

The latter is also the basis for the formalization of the Balog–Szemerédi–Gowers Theorem144

by Koutsoukou-Argyraki, Bakšys and Edmonds [18]. In 2024 Prieto-Cubides defended his145

thesis “Investigations in Graph-theoretical Constructions in Homotopy Type Theory” [26],146

for which he developed a formalization of graph theory in Agda using univalent foundations.147

In Lean, the simple graph library is parth of mathlib. In 2020, Hall’s marriage theorem was148

formalized by Gusakov, Mehta and Miller [16]. Of the three presented variants the version149

for indexed families of sets was merged into mathlib and consequently ported to Lean 4.150

Most relevant to this work is the formalization of Tutte’s theorem [2] which was developed151

(to our knowledge) in parallel and independently in Isabelle/HOL by Abdulaziz. This152

development is part of an ongoing project focusing on graph algorithms, including a proof of153

Edmonds’ Blossom Algorithm [1].154

Relevant work in the educational context differs in various ways from this work. Our work155

focuses on teaching the actual formalization process, whereas most existing works consider156

teaching mathematics using formalization. Thoma and Iannone have studied the effect of157

learning Lean on the characteristics of students’ proofs [30]. The same has been done using158

Waterproof by Hoofd, Schüler-Meyer and Wemmenhoven (Chapter 3 of [33]). Waterproof is159

built on top of Rocq and uses controlled natural language. The work of Massot on Verbose160
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Lean [22] also uses controlled natural language. The Mechanics of Proof by Macbeth [21]161

offers a good example of material that is useful prior to doing a formalization project with our162

framework. Using proof assistants is also one technique in the broader field of formal methods163

in software engineering. Spickova and Zamansky [29] present an overview of approaches to164

teach formal methods in that context. We note that the use of proof assistents for education165

has a rich history, going back to Mizar, used to teach logic by Trybulec [31]. We refer to166

Tran Minh, Gonnord and Narboux [23] for a more comprehensive overview.167

1.4 Reading guide168

The structure of this work is as follows: Section 1 contains a brief overview of Tutte’s theorem169

and related work. Section 2 presents the formalization of Tutte’s theorem. Section 3 contains170

the framework along with the process of Tutte’s theorem as an example. These two sections171

can be read relatively independently: Section 3 sometimes refers to Section 2 for specific172

details concerning examples, but these are not necessary to follow the educational content.173

Section 4 concludes and suggests ideas for future projects in this area.174

2 Formalization175

We present the formalization of Tutte’s theorem. First we present a brief overview of176

prerequisites that were already available in mathlib before the project. Then we present177

extensions of mathlib that were part of the formalization. Finally we present the proof itself.178

We focus on the structure and definitions in the formalization and have omitted most proofs179

using sorry, in addition we have modified code samples for clarity. The names of the results180

link to the actual complete code in mathlib’s GitHub repository. All code snippets before181

Section 2.3 are from mathlib version 4.1.7. All code snippets after that section are from182

a commit on a branch of mathlib: 0d2016d6b2de4c164766a24bce95ca948950844c. This183

commit is part of the final pull request to make Tutte’s theorem available in mathlib.184

2.1 Preliminaries185

We provide a brief overview of definitions in mathlib’s SimpleGraph namespace that are186

relevant to the proof of Tutte’s theorem. The definitions in this section where already187

available in mathlib at the start of this project. The definitions in Section 2.2 and onward188

were added as part of this work.189

2.1.1 SimpleGraph, Subgraph and coercions190

A simple graph is defined as a symmetric and irreflexive relation on a type V (Listing 1).191

By default, the symm and loopless fields are assigned via the tactic aesop_graph. Aesop is a192

configurable, tree-based proof search tactic [19]. For brevity, the definition of aesop_graph193

is omitted; it mostly involves configuring aesop with a ruleset tailored to simple graphs.194

Additionally, the intro rule is configured to unfold with default transparency, and the tactic195

is set to fail if it cannot complete the goal. This configuration supports the intended use case:196

automatically attempting to prove the symmetry and irreflexivity of the given adjacency197

relation.198

199
structure SimpleGraph 2 (V : Type u) where200

Adj : V → V → Prop201

symm : Symmetric Adj := by aesop_graph202

https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Basic.lean#L87
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loopless : Irreflexive Adj := by aesop_graph203204

Listing 1 Definition of SimpleGraph.

Next, we examine the definition of subgraphs. Subgraphs depend on the graph from205

which they arise and, consequently, also on the type of vertices V (Listing 2). The verts field206

represents the set of vertices on which the subgraph lives. This allows specifying whether a207

particular subgraph is considered with or without certain isolated vertices. The adj_sub field208

characterizes the fact that it is a subgraph. The remaining fields just ensure compatibility:209

edge_vert enforces that the set of vertices is compatible with the relation given, and symm210

enforces the symmetry. It is not necessary to include irreflexivity, since this is derivable from211

adj_sub. Henceforth, we will refer to this graph G as the ambient graph and the type V as212

the ambient vertices in the context of a particular subgraph.213

214
structure Subgraph 2 {V : Type u} (G : SimpleGraph V) where215

verts : Set V216

Adj : V → V → Prop217

adj_sub : ∀ {v w : V}, Adj v w -> G.Adj v w218

edge_vert : ∀ {v w : V}, Adj v w -> v ∈ verts219

symm : Symmetric Adj := by aesop_graph220221

Listing 2 Definition of Subgraph.

We now discuss the three basic conversions between graphs and subgraphs (Listing 3):222

coe, spanningCoe and toSubgraph. The two coercions, coe and spanningCoe, differ only in223

the vertex type of the resulting SimpleGraph. These coercions yields a graph on the vertices224

of the subgraph and on the ambient vertices, respectively. In the case that the subgraph225

spans the ambient vertices, the two resulting graphs are equivalent. Using toSubgraph, a226

SimpleGraph can be interpreted as a Subgraph of another. The comparison for SimpleGraph227

originates from the definition of the distributive lattice structure on the type. There, for two228

simple graphs H and G it is defined that H ≤ G is notation for ∀ a b, H.Adj a b → G.Adj a b.229

This condition is the same as the adj_sub field in the Subgraph structure.230

231
def Subgraph.coe 2 (G’ : Subgraph G) : SimpleGraph G’.verts where232

Adj v w := G’.Adj v w233

symm _ _ h := G’.symm h234

loopless v h := loopless G v (G’.adj_sub h)235

236

def Subgraph.spanningCoe 2 (G’ : Subgraph G) : SimpleGraph V where237

Adj := G’.Adj238

symm := G’.symm239

loopless v hv := G.loopless v (G’.adj_sub hv)240

241

def toSubgraph 2 (H : SimpleGraph V) (h : H ≤ G) : G.Subgraph where242

verts := Set.univ243

Adj := H.Adj244

adj_sub e := h e245

edge_vert _ := Set.mem_univ _246

symm := H.symm247248

Listing 3 Conversions between graphs and subgraphs.

https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean#L59
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean#L132
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean#L161
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean#L560
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2.1.2 Matchings249

To formulate Tutte’s theorem, we first define a perfect matching. All definitions in this250

section belong to the SimpleGraph.Subgraph namespace. A subgraph satisfies the predicate251

IsMatching if for every vertex of the subgraph, there exists a unique adjacent vertex within252

that subgraph. A perfect matching is then defined as a subgraph that is both a matching253

and a spanning subgraph. The support of a subgraph is defined as the domain of the254

adjacency relation (Listing 4). Hence, the sets verts and support differ precisely by the255

isolated vertices included in the subgraph. Because IsMatching is based on verts instead256

of support, these sets coincide for matchings. All these definitions are stated in Listing 4.257

258
def IsMatching 2 (M : Subgraph G) : Prop :=259

∀ {|v|}, v ∈ M.verts → ∃! w, M.Adj v w260

261

def IsSpanning 2 (G’ : Subgraph G) : Prop := ∀ v : V, v ∈ G’.verts262

263

def IsPerfectMatching 2 (M : G.Subgraph) : Prop :=264

M.IsMatching ∧ M.IsSpanning265

266

def support 2 (H : Subgraph G) : Set V := Rel.dom H.Adj267

268

theorem IsMatching.support_eq_verts 2 (h : M.IsMatching) :269

M.support = M.verts := by sorry270271

Listing 4 Definitions of (perfect) matchings and support.

2.1.3 Walk, Trail, Path and Cycle272

The definitions of walks, trails, paths and cycles are essential for two main reasons. First,273

they are used to define the notion of reachability, which, in turn, is used to define connected274

components. Second, they play a key role in augmenting matchings, as explained in Section 2.2.275

This latter application is the primary motivation for introducing the concepts of walks and276

cycles in this context. A Walk is defined as an inductive type dependent on the graph G in277

which it lives (Listing 5). It strongly resembles the standard definition of a list, except that278

the adjacency condition for consecutive vertices is built into the cons constructor.279

280
inductive Walk 2 (G : SimpleGraph V) : V → V → Type u281

| nil {u : V} : Walk u u282

| cons {u v w : V} (h : G.Adj u v) (p : Walk v w) : Walk u w283

deriving DecidableEq284285

Listing 5 Definition of walks.

When considering a walk, there are several relevant properties for Tutte’s theorem. To286

define them, we need two functions: edges returns a list of edges as elements of Sym2 V and287

support returns a list of vertices. The Nodup predicate ensures that these lists contain no288

duplicates. This is used in the predicates on walks, which are expressed as structures with289

the relevant properties (Listing 6). IsTrail enforces that no edges are duplicated, while290

IsPath enforces that no vertices are duplicated. IsCircuit refers to a nontrivial trail with291

the same start and end vertices and IsCycle is a circuit with no duplicate vertices apart292

from the first one.293

294
structure IsTrail 2 {u v : V} (p : G.Walk u v) : Prop where295

edges_nodup : p.edges.Nodup296

https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Matching.lean#L64
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean#L149
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Matching.lean#L206
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Subgraph.lean#L201
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Matching.lean#L208
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Walk.lean#L53
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Path.lean#L78
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297

structure IsPath 2 {u v : V} (p : G.Walk u v) extends IsTrail p : Prop where298

support_nodup : p.support.Nodup299

300

structure IsCircuit 2 {u : V} (p : G.Walk u u) extends IsTrail p : Prop where301

ne_nil : p ̸= nil302

303

structure IsCycle 2 {u : V} (p : G.Walk u u) extends IsCircuit p : Prop where304

support_nodup : p.support.tail.Nodup305306

Listing 6 Properties of walks.

2.1.4 Reachability and Connected Components307

Connected components are needed for both the statement and proof of Tutte’s theorem.308

First, we define reachability, then we define connected components in terms of reachability309

(Listing 7). Reachability between vertices u and v is defined as the type of walks between310

them being nonempty, which is a non-constructive way of stating their existence. This311

definition allows using and proving the reachability relation by converting to and from Walk312

respectively. Connected components are then defined as the quotient of the reachability313

relation. When dealing with vertices in connected components, it can be helpful to treat the314

component as a Set V, using supp (short for support).315

316
def Reachable 2 (u v : V) : Prop := Nonempty (G.Walk u v)317

318

def ConnectedComponent 2 := Quot G.Reachable319

320

def ConnectedComponent.supp 2 (C : G.ConnectedComponent) :=321

{v | G.connectedComponentMk v = C}322323

Listing 7 Reachability and connected components.

2.2 Augmenting matchings324

A common operation on matchings is to extend or modify them using the symmetric difference325

with an alternating path or an alternating cycle, respectively. In mathlib, both SimpleGraph326

and Subgraph have a definition of the symmetric difference. However, the definition on327

subgraphs has the quirk that it modifies the verts on which it is defined. In the context328

of Tutte’s theorem, we want to retain all vertices and only modify the edges, which is329

precisely what the symmetric difference on graphs is defined to do. This means that we330

will be using SimpleGraph V as the core type when reasoning about this, despite the fact331

that the IsMatching predicate is defined on subgraphs. Therefore, we will need to coerce332

the subgraphs involved to simple graphs. As explained in Section 2.1.1, this can be done333

using either coe and spanningCoe. The resulting graphs have different types, since for a334

subgraph M it holds that M.coe : SimpleGraph M.verts and M.spanningCoe : SimpleGraph V.335

In the case of perfect matchings, this subgraph is spanning. This means that M.verts is336

actually Set.univ, the set of all ambient vertices. However, as types, SimpleGraph M.verts337

and SimpleGraph V are not definitionally equal, merely equivalent. To avoid issues with type338

checking, we use spanningCoe, thereby continuing to use V as ambient vertices.339

In Listing 8, we present the definition of IsCycles. While we will only need to take the340

symmetric difference with a single cycle, all results apply to sets of cycles.341

https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Path.lean#L83
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Path.lean#L91
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Path.lean#L99
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Path.lean#L804
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Path.lean#L975
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Path.lean#L1134
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342
def IsCycles 2 (G : SimpleGraph V) := ∀ {|v|},343

(G.neighborSet v).Nonempty → (G.neighborSet v).ncard = 2344345

Listing 8 Definition of IsCycles.

Listing 9 contains the definition of IsAlternating. A graph G is alternating with respect346

to some other graph G’ if exactly every other edge in G belongs to G’. Note that this can347

only hold if the degree of each vertex in G is at most two, because having degree three or348

more forces two incident edges to be either both included or both excluded from G’. This349

requirement is met by any graph that satisfies IsCycles. The lemma then shows that taking350

the symmetric difference with a cycle alternating with a perfect matching again yields a351

perfect matching.352

353
def IsAlternating 2 (G G’ : SimpleGraph V) := ∀ {|v w w’: V|}, w ̸= w’ →354

G.Adj v w → G.Adj v w’ → (G’.Adj v w ↔ ¬ G’.Adj v w’)355

356

lemma IsPerfectMatching.symmDiff_of_isAlternating 2 (hM : M.IsPerfectMatching)357

(hG’ : G’.IsAlternating M.spanningCoe) (hG’cyc : G’.IsCycles) :358

(⊤ : Subgraph (M.spanningCoe △ G’)).IsPerfectMatching := by sorry359360

Listing 9 Alternating graphs

2.3 Tutte’s theorem formalized361

We present the formalization in a top-down manner, beginning with the final proof before362

covering the various components. Listing 10 presents the statement and proof of Tutte’s363

theorem. First, we formalize the notion of a Tutte violator and then use that to state Tutte’s364

theorem. We focus on the main version of Tutte’s Theorem, which concerns finite graphs,365

encoded with the instance Fintype V. We first dismiss the necessity with a lemma, show366

that Fintype.card V must be even, and then proceed to the core of the proof: showing the367

sufficieny of the condition for a perfect matching.368

369
def IsTutteViolator 2 (G: SimpleGraph V) (u : Set V) : Prop :=370

u.ncard < ((⊤ : G.Subgraph).deleteVerts u).coe.oddComponents.ncard371

372

theorem tutte 2 [Fintype V] : (∃ (M : Subgraph G) , M.IsPerfectMatching) ↔373

(∀ (u : Set V), ¬ G.IsTutteViolator u) := by374

classical375

refine ⟨by rintro ⟨M, hM⟩; apply not_IsTutteViolator hM, ?_⟩376

contrapose!377

intro h378

by_cases hvOdd : Odd (Fintype.card V)379

· exact ⟨∅, isTutteViolator_empty hvOdd⟩380

· exact exists_TutteViolator h (Nat.not_odd_iff_even.mp hvOdd)381382

Listing 10 Statement and proof of Tutte

In Listing 11, we examine the easier parts of the proof. In isTutteViolator_empty we383

show that the empty set is a Tutte violator. This hinges on odd_card_iff_odd_components 2,384

which states that the vertex set has odd cardinality precisely when the graph has an odd385

number of odd components. In not_IsTutteViolator we show the necessity of the condition,386

by constructing an injective function from the odd components to the deleted vertices. This387

is done using a lemma that shows that under a perfect matching in the original graph, in388

https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Matching.lean#L336
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Matching.lean#L527
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Matching.lean#L562
https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/Tutte.lean#L31
https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/Tutte.lean#L327
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Connectivity/WalkCounting.lean#L250
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each odd component at least one node must be matched to a deleted vertex. Injectivity389

follows from the fact that each deleted vertex can only be matched to one other vertex.390

391
theorem isTutteViolator_empty 2 (hodd : Odd (Fintype.card V)) :392

G.IsTutteViolator ∅ := by sorry393

394

lemma not_IsTutteViolator 2 {M : Subgraph G} (hM : M.IsPerfectMatching) (u : Set395

V) : ¬G.IsTutteViolator u := by sorry396397

Listing 11 The easier parts of the proof

In Listing 12, we address the sufficiency. First, we show that it suffices to consider Gmax,398

an edge-maximal extension of G. The lemma exists_maximal_isMatchingFree 2 uses the399

ordering on graphs, the fact that there are only finitely many graphs on a finite vertex set,400

and a general result from mathlib to obtain an edge-maximal graph, and use monotonicity401

of the number of odd components to show that it suffices to consider that case. We then402

consider two cases: when G.deleteUniversalVerts has only cliques as components, and when403

it does not. For the first case, we quickly defer to a lemma that encapsulates this result.404

For the second case, we first obtain certain vertices and properties required to construct a405

matching before delegating the details to a lemma.406

407
def universalVerts 2 (G : SimpleGraph V) : Set V :=408

{v : V | ∀ {|w|}, v ̸= w → G.Adj w v}409

410

def deleteUniversalVerts 2 (G : SimpleGraph V) : Subgraph G := (⊤ : Subgraph411

G).deleteVerts G.universalVerts412

413

lemma exists_TutteViolator 2 (h : ∀ (M : G.Subgraph), ¬M.IsPerfectMatching)414

(hvEven : Even (Fintype.card V)) :415

∃ u, G.IsTutteViolator u := by416417

Listing 12 The sufficiency

In Listing 13, we address the case in which the graph decomposes into cliques. First,418

we construct a matching that covers all components by matching one vertex from each odd419

component to a universal vertex. Then, we show that if we remove the matched nodes, each420

component remains with an even number of vertices. This allows a matching where all re-421

maining vertices within each component are matched internally. In exists_of_isClique_supp422

it is established that the remaining vertices are even in number and to obtain a matching on423

those vertices. These to matchings are then joined to yield a perfect matching.424

425
theorem Subgraph.IsPerfectMatching.exists_of_isClique_supp 2426

(hveven : Even (Fintype.card V)) (h : ¬G.IsTutteViolator G.universalVerts)427

(h’ : ∀ (K : G.deleteUniversalVerts.coe.ConnectedComponent),428

G.deleteUniversalVerts.coe.IsClique K.supp) : ∃ (M : Subgraph G),429

M.IsPerfectMatching := by430

sorry431432

Listing 13 The case of cliques

If the graph does not decompose into cliques, we first obtain two near matchings (as433

matchings on a graph with one added edge). In Listing 14, we use the symmetric difference of434

these matchings to find an alternating cycle primarily contained in this symmetric difference435

(and fully within G). This is done by obtaining an alternating path within symmetric436

difference, starting with the edge s(a, c). If x cannot be reached, we obtain an alternating437

https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/Tutte.lean#L139
https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/Tutte.lean#L149
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Matching.lean#L322
https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/UniversalVerts.lean#L32
https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/UniversalVerts.lean#L41
https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/Tutte.lean#L284
https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/Tutte.lean#L122
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cycle for immediate use; otherwise, the path ends at either x or b. Both these cases are then438

dismissed using a helper lemma.439

Note that this theorem has a relatively large number of hypotheses. Some of these440

hypotheses are essential and would also appear in an informal proof as arguments, whereas441

the rest merely encode assumptions about adjacency and vertex distinctness. In this context,442

we primarily work with V as ambient vertices and use subgraphs of G wherever feasible. As443

noted in Section 2.2, the symmetric difference for Subgraph is not suitable in this context.444

Consequently, whenever possible, we use spanningCoe to convert a subgraph to a SimpleGraph445

G.446

447
private theorem tutte_exists_isPerfectMatching_of_near_matchings 2 {x a b c : V}448

{M1 : Subgraph (G ⊔ edge x b)} {M2 : Subgraph (G ⊔ edge a c)} (hxa : G.Adj x a)449

(hab : G.Adj a b) (hnGxb : ¬G.Adj x b) (hnGac : ¬ G.Adj a c) (hnxb : x ̸= b)450

(hnxc : x ̸= c)451

(hnac : a ̸= c) (hnbc : b ̸= c) (hM1 : M1.IsPerfectMatching) (hM2 :452

M2.IsPerfectMatching) :453

∃ (M : Subgraph G), M.IsPerfectMatching := by sorry454455

Listing 14 The case of non-cliques

Since we have now treated all the cases, this completes the formalization.456

3 Framework for educational formalization projects457

This section presents our framework for educational formalization projects. We first describe458

our framework and embed it in Bloom’s taxonomy to link it to the theory of learning. This459

embedding shows that the framework supports training beginners to undertake an extensive460

formalization project. We then propose conditions for the successful application of the461

framework. Throughout, we explain how this framework minimizes teacher input. Finally,462

we illustrate the framework by applying it to the process of formalizing Tutte’s theorem.463

The overview of the framework appears in Table 1 (in Section 1).464

The goal of the framework is to facilitate the process of learning formalization while465

minimizing teacher input. The student’s learning is prioritized, the product of the project466

is secondary. However, a capable student could produce a formalization that benefits the467

broader community, within the scope of the project.468

3.1 Framework description469

The framework consists of two phases. In the first phase, the student produces an ini-470

tial formalization, which is then polished (and optionally integrated) in the second phase.471

These phases align with lower-order and higher-order thinking skills in the revised Bloom’s472

taxonomy [3]. With this framework we aim for teaching procedural knowledge related to473

formalization. Working with an interactive theorem prover, proving goals and formulating474

goals are part of understanding and applying the interactive theorem prover, corresponding475

to the second and third category in Bloom’s taxonomy. Hence, the first phase mainly fosters476

lower-order thinking skills. In order to successfully refactor and architect formal proofs, a477

student needs the higher-order thinking skills of analysis, the fourth category in Bloom’s478

taxonomy. A good student will also grow to self-assess their refactored proof, for which they479

need to be able to evaluate the quality. This is part of the fifth category of Bloom’s taxon-480

omy. Thus, our framework spans the second through fifth categories of Bloom’s taxonomy,481

https://github.com/leanprover-community/mathlib4/blob/0d2016d6b2de4c164766a24bce95ca948950844c/Mathlib/Combinatorics/SimpleGraph/Tutte.lean#L165


12 Tutte’s theorem as an educational formalization project

facilitating a student’s progression from beginner to executing more extensive formalization482

projects.483

The teacher role adapts throughout the project. During the first phase, the primary484

task is to provide the student with a correct goal statement with an appropriate scope. It485

is crucial that the details of the goal statement are accurate; the goal should be provable486

and correspond to the mathematical idea that is communicated to the student. When the487

student encounters difficulties in the initial phase, focus on providing tools. Preferably, this488

involves referencing a resource that enables them to resolve the problem independently. If489

relevant resources are lacking, focus on explaining how you would overcome the difficulty and490

guide them through that process, rather than providing the answer. This prevents repetitive491

questions and thus minimizes teacher input in the long run. During the second phase, the492

teacher role shifts to being a reviewer. This provides the student with examples of important493

details and proper structuring of the formal proof. In this phase, the teacher will offer more494

specific pointers and guide the student with targeted advice, rather than teaching a general495

workflow.496

The teacher should also communicate the expectations regarding the student role. It is497

recommended to emphasize that the initial goal is to get a working formalization. Students498

should be informed not to worry excessively about issues concerning the structure of the proof,499

duplicated code, and general quality. Note that this does not imply a complete disregard for500

these issues. However, if structural or quality issues prevent the student from completing the501

proof, then these issues should be addressed. A practice that can be recommended is leaving502

TODO markers when the student signals a quality issue that is not problematic for getting503

to an initial formalization. Students should be made aware that addressing these issues504

is the goal of the second phase. It is important for students to understand that they can505

spend a relatively large amount of time thinking about how something should be structured,506

compared to the time needed to implement it. The scope of the projects should be limited507

enough to enable capable students to produce a formalization adhering to the standards of508

the respective community.509

This framework is both compatible with communities with centralized and decentralized510

development models. In case of a more centralized development model, such as mathlib511

or Rocq’s mathcomp, a capable student will get to submit pull requests to the centralized512

repository. In case of a more decentralized model, such as the Archive of Formal Proofs for513

Isabelle, the second phase might involve splitting part of the proof into a reusable library514

and submitting these separately to the AFP.515

3.2 Conjectured necessary conditions516

Since we present only one example, we cannot be certain of the exact conditions to successfully517

apply this framework. We propose some necessary conditions that we conjecture to be518

important.519

For the student, we propose one condition: The student should be at the appropriate520

level. This means the student should have a basic understanding of formalization. For a521

student with some mathematical experience, that could be achieved by working through an522

extensive tutorial such as ‘Theorem Proving in Lean’ [5]. For a less experienced student,523

teaching the mathematics and formalization in parallel is an option, for example, using ‘The524

Mechanics of Proof’ [21]. In addition, we suggest that the student should not have mastered525

the skills taught in the first phase. Once a student has acquired these skills, it becomes much526

more feasible to aim for a polished formalization immediately. This condition ensures that527

the student’s level matches the learning goals in our framework.528



P. Otte 13

The teacher must be able to fulfill three responsibilities: pointing to relevant learning529

resources, reviewing the proof, and selecting a suitable goal. Pointing to the relevant resources530

in the first phase is important for minimizing teacher input. If the teacher cannot defer to531

resources, they must instead spend time explaining the issue at hand. Being able to review532

the proof is essential for the learning process. This aspect of the framework helps students533

eventually tackle more substantial projects independently. Selecting a suitable goal consists534

of two parts: selecting a mathematical idea to be formalized and formalizing the statement.535

The latter part is relatively straightforward; the teacher should formalize the goal mainly in536

terms of existing definitions. New definitions may be introduced, but the student should be537

informed that they are free to modify them if it benefits the formalization, as long as the538

mathematical content remains unchanged. Selecting a suitable idea depends on the context.539

In a traditional academic setting, the most important part is that the formalization can be540

completed in the allotted time. We suggest a rule of thumb: If the initial formalization is can541

be completed in half the allotted time, this will leave enough time for the second phase. It542

also provides some flexibility and should ensure every student has something to be assessed543

on, even if it is not a fully polished formalization. This rule of thumb is based on the timeline544

of the formalization of Tutte’s theorem (see Section 3.3). In a community-driven context,545

the teacher should confer with the student about what they consider a suitable goal. In546

general, a suitable target for formalization is something that is valuable to the community,547

is not currently being pursued by others and should not lie on the critical path for larger548

efforts. This arrangement allows the student to progress at their own pace while contributing549

something valuable to the community.550

3.3 Tutte’s theorem as an educational formalization project551

We describe the formalization of Tutte’s theorem as an application of our proposed framework.552

This project is an instance of independent community-driven education: the author began553

the formalization as a learning endeavor, with a potential contribution to mathlib. The Lean554

community fulfilled the teacher role, primarily through asynchronous communication through555

the Lean Zulip5 and in GitHub pull request comments.556

We show how the proposed conditions emerged from the execution of this particular557

project. Prior to this project, the author’s experience with formalization was limited to558

tutorials, a formalization of the multinomial theorem in Lean 3, and the porting of several files559

from Lean 3 to Lean 4 in mathlib. This satisfies the requirement for a basic understanding560

of formalization, without implying extensive experience. The mathematical idea to formalize561

was selected by the author, based on a TODO marker in mathlib indicating it was a desired562

result. Kyle Miller helped to arrive at a correct formal statement to target for the first phase.563

Yaël Dillies took on a very large part of the teacher role in the second phase by consistently564

reviewing the pull requests in the combinatorics area, prior to mathlib maintainers doing565

the final review. In these final reviews, Bhavik Mehta and other maintainers provided a lot566

of useful feedback. The ability to point to relevant resources was partially fulfilled. The567

community would refer to important parts of “Theorem Proving in Lean” [5]. However,568

some resources did not yet exist and therefore could not be referenced. The Lean Language569

Reference [8] is one such resource that did not exist at the start of the project and would570

have been helpful at an earlier stage. Since this was an instance of independent education,571

the scope was not tied to any particular timeline or workload. The first phase was started in572

5 https://leanprover.zulipchat.com
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September of 2023 and finished on 16 July 2024. The second phase then ran from July 2024573

to March 2025. Note that due to varying time commitments during this time, we cannot574

state that the lead time of the phases is proportional to the effort. We estimate that the575

time was split equally over the two phases, which led us to the rule of thumb presented in576

Section 3.2: aim for the first phase to take half the allotted time.577

Since the formalization is nearly fully integrated in mathlib, the author self-assesses that578

the learning goals outlined in the framework have been achieved. Working with an ITP,579

proving goals and formulating intermediate goals have both been clearly demonstrated. At580

the end of the first phase, the formalization was contained in a single file with 5757 lines. At581

the time of writing, the formalization contains 686 lines, spread over 2 files. The remainder582

of the formalization was contributed to mathlib or superseded by improved proofs, reducing583

its overall size. We claim that this demonstrates the ability to refactor and architect formal584

proofs. Documenting all insights in detail would be overly verbose for this work. Instead, we585

illustrate the type of insights students should gain from a project in our framework, using586

two examples.587

3.3.1 Example: have-tactic pattern588

The lessons in the first phase will be relatively basic. One example is the use of the have-tactic589

pattern, where intermediate goals are stated, and a tactic leveraging local hypotheses is then590

used to discharge the goal. Although this pattern is not always the best way to present591

a polished proof, we consider it to be a useful tool in achieving an initial formalization.592

It encapsulates the idea that the user of the ITP provides motivation for the reason why593

something is true, followed by some tactic that automates the “trivial” part of the proof.594

Listing 15 contains an example that uses the omega tactic for linear arithmetic, but this595

pattern is also useful in conjunction with more specific tactics (like exact or apply) or more596

general-purpose tactics (such as aesop). We remark that this pattern is an example of597

something that is well-supported by the Isabelle/Isar framework by Wenzel [34]. While598

the Lean syntax has the ability to support Isar-style proofs, it is not enforced or broadly599

recommended. We hypothesize that a similar framework could be developed for Lean and600

this might help students to structure their proofs in a more readable way.601

602
have : (Fintype.card V + 1) - (p.length + 1 + 1) < (Fintype.card V + 1) -603

(p.length + 1) := by604

have h1 := SimpleGraph.Walk.IsPath.length_lt hpp605

omega606607

Listing 15 have-tactic pattern

3.3.2 Example: Abstraction of representatives608

The second phase allows more in-depth lessons, given that it concerns higher-order learning609

skills. We present one such example along with the broader learnings we draw from it. We610

describe an architectural decision made during integration into mathlib and discuss the611

associated trade-offs. In the proof shown in Listing 13, we aim to obtain exactly one vertex612

from each odd component that remains after deleting universal vertices. Concretely, we613

first take the set of odd components, then consider the image under Quot.out followed by614

Subtype.val. Quot.out produces a vertex in the connected component. Subtype.val converts615

this vertex from G.deleteUniversalVets.coe to V. The key property of this construction is616

that it provides exactly one vertex from each odd component, with no vertices outside those617
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components. We present four versions of formalization of this property, with various levels of618

abstraction: Version 1 abstracts the underlying set of components. This version does not619

admit other choices for representatives, which makes it less reusable. Version 2 abstracts620

the choice of representatives. Version 3 refines Version 2 by consolidating the properties621

into a single statement, leveraging the bijectivity of the function that maps a vertex to its622

corresponding component (a strategy suggested by Eric Wieser). Version 4 then abstracts to623

the setting of Quot rather than ConnectedComponent.624

625
-- Concrete set of representatives626

def oddVerts (G : SimpleGraph V) : Set V := Subtype.val ’’ (Quot.out ’’627

G.deleteUniversalVerts.coe.oddComponents)628

-- Version 1629

lemma rep_unique {C : Set (G.ConnectedComponent)} (c : G.ConnectedComponent)630

(h : c ∈ C) : ∃! v, v ∈ Quot.out ’’ C ∩ c.supp := by sorry631

632

lemma disjoint_rep_image_supp {C : Set (G.ConnectedComponent)} (c :633

G.ConnectedComponent)634

(h : c /∈ C) : Disjoint (Quot.out ’’ C) c.supp := by sorry635

-- Version 2636

Set.Represents (s : Set V) (C : Set G.ConnectedComponent) where637

unique_rep {c : G.ConnectedComponent} (h : c ∈ C) : ∃! v, v ∈ s ∩ c.supp638

exact_rep {c : G.ConnectedComponent} (h : c /∈ C) : s ∩ c.supp = ∅639

640

lemma represents_of_image_exists_rep_choose (C : Set G.ConnectedComponent) :641

((fun c 7→ c.out) ’’ C).Represents C where642

unique_rep {c} h := by sorry643

exact_rep {c} {h} := by sorry644

-- Version 3645

def Represents 2 (s : Set V) (C : Set G.ConnectedComponent) : Prop :=646

Set.BijOn G.connectedComponentMk s C647

648

lemma image_out 2 (C : Set G.ConnectedComponent) :649

Represents (Quot.out ’’ C) C := by sorry650

-- Version 4651

def Represents (s : Set α) (C : Set (Quot r)) := Set.BijOn (Quot.mk r) s C652

653

lemma out_image_represents (C : Set (Quot r)) : (Quot.out ’’ C).Represents C := by654

sorry655656

Listing 16 Versions of representatives of connected components. Version 3 from mathlib, others
inspired from older versions.

If we take a broader perspective, we observe three factors at play. Firstly, there is657

abstraction with respect to the set of representatives. Secondly, we have abstraction along the658

type axis: Quot versus ConnectedComponent. Finally, there is abstraction along a mathematical659

axis, thinking in terms of functions rather than vertices. Our assessment of whether these660

abstractions are worthwhile depends on different criteria in each case. For the first factor, the661

main concern is reusability. We can conceive of situations where the choice of representatives662

does matter. Abstracting the set of representatives does not have a material impact on the663

proof in this case. This makes it a cheap abstraction. For deciding on abstraction along664

the type axis, in addition to reusability, wider library-related concerns played a role. In the665

end, the generic version was rejected based on concerns of misuse in other contexts, partially666

due to the accompanying SetLike instance. The abstraction along the mathematical axis is667

practically a free lunch: its clean formulation results in a quick proof on the default set of668

https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Represents.lean#L28
https://github.com/leanprover-community/mathlib4/blob/v4.17.0/Mathlib/Combinatorics/SimpleGraph/Represents.lean#L35
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representatives. The cost is that the element-wise properties need separate proofs, but these669

are only needed for the abstract definition.670

We hypothesize that an abstraction along the type axis is still worthwhile. However,671

including it would require identifying the circumstances in which this notion is more useful672

than misleading. In generic software engineering, the “rule of three” is often applied. This673

rule, popularized by Martin Fowler [12], states that refactoring code for abstraction needs674

three instances of use: The first usage is a concrete implementation. In the second usage, the675

relevant code is copied and modified. In the third usage, the common parts of the three usages676

are then abstracted away and consolidated to a single piece of code. We propose that this677

rule is also appropriate for this case. The fact that the definitions can be converted to Quot r678

wholesale shows that abstraction is possible. The remaining question is: What are the other679

use cases? Depending on where they are, this would inspire the formulation and location of680

the abstract version. For example, if the other uses are all in the combinatorics part of the681

library, then that also would where to place the abstraction. If other areas of the library682

adopt this approach, then placing the abstraction somewhere in the Data namespace might683

be more appropriate. Given that mathlib currently has 1.7 million lines of code, detecting684

similar patterns that could be abstracted seems a non-trivial task. Search engines could help685

with this. In the case of strict type-based search, such as Loogle6, providing an option to show686

results both more and less specific than the types given could help identify these patterns.687

Alternatively, more fuzzy approaches, like LeanSearch [13], seem very appropriate here:688

The similarity based on the mathematical ideas could allow the identification of the similar689

patterns amenable to abstraction. We propose that these improvements would facilitate690

easier refactoring efforts to arrive at the best abstraction.691

4 Conclusion and future work692

In conclusion, we presented the formalization of Tutte’s theorem, a key theorem in matching693

theory. This formalization has largely been contributed to mathlib, providing a stepping694

stone towards the formalization of research-level mathematics in this area. We presented a695

framework for educational formalization projects, applicable in both traditional academic696

and independent community-driven settings. With this framework, we offer teachers a way to697

teach more advanced formalization efficiently, by minimizing the input required from them.698

Some interesting smaller projects to extend the treatment of simple graphs in mathlib699

include adding the graph formulation of Hall’s marriage theorem by building on Gusakov et700

al. [16] or proving the Tutte–Berge formula. An more ambitious project might be inspired by701

the ongoing work of Abdulaziz [1] and prove various results for graph algorithms in Lean.702

Regarding education, an interesting project would apply the presented framework on a larger703

scale and use the resulting feedback to propose improvements. This could be done both in704

the traditional academic and independent community-driven settings. A Isabelle/Isar-style705

framework for Lean could also be developed, as suggested in Section 3.3.1.706
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